mc.pbart {BART} R Documentation

## Probit BART for dichotomous outcomes with Normal latents and parallel computation

### Description

BART is a Bayesian “sum-of-trees” model.
For a binary response y, P(Y=1 | x) = F(f(x)), where F denotes the standard normal cdf (probit link).

In both cases, f is the sum of many tree models. The goal is to have very flexible inference for the uknown function f.

In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it contributes a small amount to the overall fit.

### Usage

mc.pbart(
x.train, y.train, x.test=matrix(0.0,0,0),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0.0,0,0), usequants=FALSE,
cont=FALSE, rm.const=TRUE,
k=2.0, power=2.0, base=.95,
binaryOffset=NULL,
ntree=50L, numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=1L, printevery=100,
keeptrainfits=TRUE, transposed=FALSE,

mc.cores = 2L, nice = 19L,
seed = 99L
)


### Arguments

 x.train Explanatory variables for training (in sample) data. May be a matrix or a data frame, with (as usual) rows corresponding to observations and columns to variables. If a variable is a factor in a data frame, it is replaced with dummies. Note that q dummies are created if q>2 and one dummy is created if q=2, where q is the number of levels of the factor. pbart will generate draws of f(x) for each x which is a row of x.train. y.train Binary dependent variable for training (in sample) data. x.test Explanatory variables for test (out of sample) data. Should have same structure as x.train. pbart will generate draws of f(x) for each x which is a row of x.test. sparse Whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform; see Linero 2016. theta Set theta parameter; zero means random. omega Set omega parameter; zero means random. a Sparse parameter for Beta(a, b) prior: 0.5<=a<=1 where lower values inducing more sparsity. b Sparse parameter for Beta(a, b) prior; typically, b=1. rho Sparse parameter: typically rho=p where p is the number of covariates under consideration. augment Whether data augmentation is to be performed in sparse variable selection. xinfo You can provide the cutpoints to BART or let BART choose them for you. To provide them, use the xinfo argument to specify a list (matrix) where the items (rows) are the covariates and the contents of the items (columns) are the cutpoints. usequants If usequants=FALSE, then the cutpoints in xinfo are generated uniformly; otherwise, if TRUE, uniform quantiles are used for the cutpoints. cont Whether or not to assume all variables are continuous. rm.const Whether or not to remove constant variables. k For binary y, k is the number of prior standard deviations f(x) is away from +/-3. The bigger k is, the more conservative the fitting will be. power Power parameter for tree prior. base Base parameter for tree prior. binaryOffset Used for binary y. The model is P(Y=1 | x) = F(f(x) + binaryOffset). ntree The number of trees in the sum. numcut The number of possible values of c (see usequants). If a single number if given, this is used for all variables. Otherwise a vector with length equal to ncol(x.train) is required, where the i^{th} element gives the number of c used for the i^{th} variable in x.train. If usequants is false, numcut equally spaced cutoffs are used covering the range of values in the corresponding column of x.train. If usequants is true, then min(numcut, the number of unique values in the corresponding columns of x.train - 1) c values are used. ndpost The number of posterior draws returned. nskip Number of MCMC iterations to be treated as burn in. keepevery Every keepevery draw is kept to be returned to the user. printevery As the MCMC runs, a message is printed every printevery draws. keeptrainfits Whether to keep yhat.train or not. transposed When running pbart in parallel, it is more memory-efficient to transpose x.train and x.test, if any, prior to calling mc.pbart. seed Setting the seed required for reproducible MCMC. mc.cores Number of cores to employ in parallel. nice Set the job niceness. The default niceness is 19: niceness goes from 0 (highest) to 19 (lowest).

### Details

BART is an Bayesian MCMC method. At each MCMC interation, we produce a draw from f in the binary y case.

Thus, unlike a lot of other modelling methods in R, we do not produce a single model object from which fits and summaries may be extracted. The output consists of values f^*(x) where * denotes a particular draw. The x is either a row from the training data (x.train) or the test data (x.test).

### Value

mc.pbart returns an object of type pbart which is essentially a list.

 yhat.train A matrix with ndpost rows and nrow(x.train) columns. Each row corresponds to a draw f^* from the posterior of f and each column corresponds to a row of x.train. The (i,j) value is f^*(x) for the i^{th} kept draw of f and the j^{th} row of x.train. Burn-in is dropped. yhat.test Same as yhat.train but now the x's are the rows of the test data. varcount a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw. For each variable (corresponding to the columns), the total count of the number of times that variable is used in a tree decision rule (over all trees) is given.

In addition the list has a binaryOffset component giving the value used.

Note that in the binary y, case yhat.train and yhat.test are f(x) + binaryOffset. If you want draws of the probability P(Y=1 | x) you need to apply the normal cdf (pnorm) to these values.

pbart

### Examples

set.seed(99)
n=5000
x = sort(-2+4*runif(n))
X=matrix(x,ncol=1)
f = function(x) {return((1/2)*x^3)}
FL = function(x) {return(exp(x)/(1+exp(x)))}
pv = FL(f(x))
y = rbinom(n,1,pv)
np=100
xp=-2+4*(1:np)/np
Xp=matrix(xp,ncol=1)

## parallel::mcparallel/mccollect do not exist on windows
if(.Platform$OS.type=='unix') { ##test BART with token run to ensure installation works mf = mc.pbart(X, y, nskip=5, ndpost=5, mc.cores=1, seed=99) } ## Not run: set.seed(99) pf = pbart(X,y,Xp) ## plot(f(Xp), pf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4),
##      xlab='True f(x)', ylab='BART f(x)')
## lines(c(-4, 4), c(-4, 4))

mf = mc.pbart(X,y,Xp, mc.cores=4, seed=99)

## plot(f(Xp), mf$yhat.test.mean, xlim=c(-4, 4), ylim=c(-4, 4), ## xlab='True f(x)', ylab='BART f(x)') ## lines(c(-4, 4), c(-4, 4)) par(mfrow=c(2,2)) plot(range(xp),range(pf$yhat.test),xlab='x',ylab='f(x)',type='n')
lines(x,f(x),col='blue',lwd=2)
lines(xp,apply(pf$yhat.test,2,mean),col='red') qpl = apply(pf$yhat.test,2,quantile,probs=c(.025,.975))
lines(xp,qpl[1,],col='green',lty=1)
lines(xp,qpl[2,],col='green',lty=1)
title(main='BART::pbart f(x) with 0.95 intervals')

plot(range(xp),range(mf$yhat.test),xlab='x',ylab='f(x)',type='n') lines(x,f(x),col='blue',lwd=2) lines(xp,apply(mf$yhat.test,2,mean),col='red')
qpl = apply(mf$yhat.test,2,quantile,probs=c(.025,.975)) lines(xp,qpl[1,],col='green',lty=1) lines(xp,qpl[2,],col='green',lty=1) title(main='BART::mc.pbart f(x) with 0.95 intervals') ## plot(pf$yhat.test.mean,apply(mf\$yhat.test,2,mean),xlab='BART::pbart',ylab='BART::mc.pbart')
## abline(0,1,col='red')
## title(main="BART::pbart f(x) vs. BART::mc.pbart f(x)")

## End(Not run)


[Package BART version 2.9.4 Index]