gbart {BART} | R Documentation |
Generalized BART for continuous and binary outcomes
Description
BART is a Bayesian “sum-of-trees” model.
For a numeric response y
, we have
y = f(x) + \epsilon
,
where \epsilon \sim N(0,\sigma^2)
.
f
is the sum of many tree models.
The goal is to have very flexible inference for the uknown
function f
.
In the spirit of “ensemble models”, each tree is constrained by a prior to be a weak learner so that it contributes a small amount to the overall fit.
Usage
gbart(
x.train, y.train,
x.test=matrix(0,0,0), type='wbart',
ntype=as.integer(
factor(type, levels=c('wbart', 'pbart', 'lbart'))),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,
lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(y.train)),
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 1L, ## mc.gbart only
nice = 19L, ## mc.gbart only
seed = 99L ## mc.gbart only
)
mc.gbart(
x.train, y.train,
x.test=matrix(0,0,0), type='wbart',
ntype=as.integer(
factor(type, levels=c('wbart', 'pbart', 'lbart'))),
sparse=FALSE, theta=0, omega=1,
a=0.5, b=1, augment=FALSE, rho=NULL,
xinfo=matrix(0,0,0), usequants=FALSE,
rm.const=TRUE,
sigest=NA, sigdf=3, sigquant=0.90,
k=2, power=2, base=0.95,
lambda=NA, tau.num=c(NA, 3, 6)[ntype],
offset=NULL, w=rep(1, length(y.train)),
ntree=c(200L, 50L, 50L)[ntype], numcut=100L,
ndpost=1000L, nskip=100L,
keepevery=c(1L, 10L, 10L)[ntype],
printevery=100L, transposed=FALSE,
hostname=FALSE,
mc.cores = 2L, nice = 19L, seed = 99L
)
Arguments
x.train |
Explanatory variables for training (in sample)
data. |
y.train |
Continuous or binary dependent variable for training (in sample) data. |
x.test |
Explanatory variables for test (out of sample)
data. Should have same structure as |
type |
You can use this argument to specify the type of fit.
|
ntype |
The integer equivalent of |
sparse |
Whether to perform variable selection based on a sparse Dirichlet prior rather than simply uniform; see Linero 2016. |
theta |
Set |
omega |
Set |
a |
Sparse parameter for |
b |
Sparse parameter for |
rho |
Sparse parameter: typically |
augment |
Whether data augmentation is to be performed in sparse variable selection. |
xinfo |
You can provide the cutpoints to BART or let BART
choose them for you. To provide them, use the |
usequants |
If |
rm.const |
Whether or not to remove constant variables. |
sigest |
The prior for the error variance
( |
sigdf |
Degrees of freedom for error variance prior.
Not used if |
sigquant |
The quantile of the prior that the rough estimate
(see |
k |
For numeric |
power |
Power parameter for tree prior. |
base |
Base parameter for tree prior. |
lambda |
The scale of the prior for the variance. If |
tau.num |
The numerator in the |
offset |
Continous BART operates on |
w |
Vector of weights which multiply the standard deviation.
Not used if |
ntree |
The number of trees in the sum. |
numcut |
The number of possible values of |
ndpost |
The number of posterior draws returned. |
nskip |
Number of MCMC iterations to be treated as burn in. |
printevery |
As the MCMC runs, a message is printed every printevery draws. |
keepevery |
Every keepevery draw is kept to be returned to the user. |
transposed |
When running |
hostname |
When running on a cluster occasionally it is useful
to track on which node each chain is running; to do so
set this argument to |
seed |
Setting the seed required for reproducible MCMC. |
mc.cores |
Number of cores to employ in parallel. |
nice |
Set the job niceness. The default niceness is 19: niceness goes from 0 (highest) to 19 (lowest). |
Details
BART is a Bayesian MCMC method.
At each MCMC interation, we produce a draw from the joint posterior
(f,\sigma) | (x,y)
in the numeric y
case
and just f
in the binary y
case.
Thus, unlike a lot of other modelling methods in R, we do not produce
a single model object from which fits and summaries may be extracted.
The output consists of values f^*(x)
(and
\sigma^*
in the numeric case) where * denotes a
particular draw. The x
is either a row from the training data,
x.train
or the test data, x.test
.
For x.train
/x.test
with missing data elements, gbart
will singly impute them with hot decking. For one or more missing
covariates, record-level hot-decking imputation deWaPann11 is
employed that is biased towards the null, i.e., nonmissing values
from another record are randomly selected regardless of the
outcome. Since mc.gbart
runs multiple gbart
threads in
parallel, mc.gbart
performs multiple imputation with hot
decking, i.e., a separate imputation for each thread. This
record-level hot-decking imputation is biased towards the null, i.e.,
nonmissing values from another record are randomly selected
regardless of y.train
.
Value
gbart
returns an object of type gbart
which is
essentially a list.
In the numeric y
case, the list has components:
yhat.train |
A matrix with ndpost rows and nrow(x.train) columns.
Each row corresponds to a draw |
yhat.test |
Same as yhat.train but now the x's are the rows of the test data. |
yhat.train.mean |
train data fits = mean of yhat.train columns. |
yhat.test.mean |
test data fits = mean of yhat.test columns. |
sigma |
post burn in draws of sigma, length = ndpost. |
first.sigma |
burn-in draws of sigma. |
varcount |
a matrix with ndpost rows and nrow(x.train) columns. Each row is for a draw. For each variable (corresponding to the columns), the total count of the number of times that variable is used in a tree decision rule (over all trees) is given. |
sigest |
The rough error standard deviation ( |
See Also
Examples
##simulate data (example from Friedman MARS paper)
f = function(x){
10*sin(pi*x[,1]*x[,2]) + 20*(x[,3]-.5)^2+10*x[,4]+5*x[,5]
}
sigma = 1.0 #y = f(x) + sigma*z , z~N(0,1)
n = 100 #number of observations
set.seed(99)
x=matrix(runif(n*10),n,10) #10 variables, only first 5 matter
Ey = f(x)
y=Ey+sigma*rnorm(n)
lmFit = lm(y~.,data.frame(x,y)) #compare lm fit to BART later
##test BART with token run to ensure installation works
set.seed(99)
bartFit = wbart(x,y,nskip=5,ndpost=5)
## Not run:
##run BART
set.seed(99)
bartFit = wbart(x,y)
##compare BART fit to linear matter and truth = Ey
fitmat = cbind(y,Ey,lmFit$fitted,bartFit$yhat.train.mean)
colnames(fitmat) = c('y','Ey','lm','bart')
print(cor(fitmat))
## End(Not run)