alligator {BART} | R Documentation |
American alligator Food Choice
Description
In 1985, American alligators were harvested by hunters from August 26 to September 30 in peninsular Florida from lakes Oklawaha (Putnam County), George (Putnam and Volusia counties), Hancock (Polk County) and Trafford (Collier County). Lake, length and sex were recorded for each alligator. Stomachs from a sample of alligators 1.09-3.89m long were frozen prior to analysis. After thawing, stomach contents were removed and separated and food items were identified and tallied. Volumes were determined by water displacement. The stomach contents of 219 alligators were classified into five categories of primary food choice: Fish (the most common primary food choice), Invertebrate (snails, insects, crayfish, etc.), Reptile (turtles, alligators), Bird, and Other (amphibians, plants, household pets, stones, and other debris).
Usage
data(alligator)
Format
A data frame with 80 observations on the following 5 variables.
lake
a factor with levels
George
Hancock
Oklawaha
Trafford
sex
a factor with levels
female
male
size
alligator size, a factor with levels
large
(>2.3m)small
(<=2.3m)food
primary food choice, a factor with levels
bird
fish
invert
other
reptile
count
cell frequency, a numeric vector
Details
The table contains a fair number of 0 counts. food
is
the response variable. fish
is the most frequent choice, and
often taken as a baseline category in multinomial response models.
Source
Agresti, A. (2002). Categorical Data Analysis, New York: Wiley, 2nd Ed., Table 7.1
References
Delany MF, Linda SB, Moore CT (1999). "Diet and condition of American alligators in 4 Florida lakes." In Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies, 53, 375–389.
Examples
data(alligator)
## Not run:
library(nnet)
## nnet::multinom Multinomial logit model fit with neural nets
fit <- multinom(food ~ lake+size+sex, data=alligator, weights=count)
summary(fit$fitted.values)
## 1=bird, 2=fish, 3=invert, 4=other, 5=reptile
(L=length(alligator$count))
(N=sum(alligator$count))
y.train=integer(N)
x.train=matrix(nrow=N, ncol=3)
x.test=matrix(nrow=L, ncol=3)
k=1
for(i in 1:L) {
x.test[i, ]=as.integer(
c(alligator$lake[i], alligator$size[i], alligator$sex[i]))
if(alligator$count[i]>0)
for(j in 1:alligator$count[i]) {
y.train[k]=as.integer(alligator$food[i])
x.train[k, ]=as.integer(
c(alligator$lake[i], alligator$size[i], alligator$sex[i]))
k=k+1
}
}
table(y.train)
##test mbart with token run to ensure installation works
set.seed(99)
check = mbart(x.train, y.train, nskip=1, ndpost=1)
set.seed(99)
check = mbart(x.train, y.train, nskip=1, ndpost=1)
post=mbart(x.train, y.train, x.test)
##post=mc.mbart(x.train, y.train, x.test, mc.cores=8, seed=99)
##check=predict(post, x.test, mc.cores=8)
##print(cor(post$prob.test.mean, check$prob.test.mean)^2)
par(mfrow=c(3, 2))
K=5
for(j in 1:5) {
h=seq(j, L*K, K)
print(cor(fit$fitted.values[ , j], post$prob.test.mean[h])^2)
plot(fit$fitted.values[ , j], post$prob.test.mean[h],
xlim=0:1, ylim=0:1,
xlab=paste0('NN: Est. Prob. j=', j),
ylab=paste0('BART: Est. Prob. j=', j))
abline(a=0, b=1)
}
par(mfrow=c(1, 1))
L=16
x.test=matrix(nrow=L, ncol=3)
k=1
for(size in 1:2)
for(sex in 1:2)
for(lake in 1:4) {
x.test[k, ]=c(lake, size, sex)
k=k+1
}
x.test
## two sizes: 1=large: >2.3m, 2=small: <=2.3m
pred=predict(post, x.test)
##pred=predict(post, x.test, mc.cores=8)
ndpost=nrow(pred$prob.test)
size.test=matrix(nrow=ndpost, ncol=K*2)
for(i in 1:K) {
j=seq(i, L*K/2, K) ## large
size.test[ , i]=apply(pred$prob.test[ , j], 1, mean)
j=j+L*K/2 ## small
size.test[ , i+K]=apply(pred$prob.test[ , j], 1, mean)
}
size.test.mean=apply(size.test, 2, mean)
size.test.025=apply(size.test, 2, quantile, probs=0.025)
size.test.975=apply(size.test, 2, quantile, probs=0.975)
plot(factor(1:K, labels=c('bird', 'fish', 'invert', 'other', 'reptile')),
rep(1, K), col=1:K, type='n', lwd=1, lty=0,
xlim=c(1, K), ylim=c(0, 0.5), ylab='Prob.',
sub="Multinomial BART\nFriedman's partial dependence function")
points(1:K, size.test.mean[1:K+K], col=1)
lines(1:K, size.test.025[1:K+K], col=1, lty=2)
lines(1:K, size.test.975[1:K+K], col=1, lty=2)
points(1:K, size.test.mean[1:K], col=2)
lines(1:K, size.test.025[1:K], col=2, lty=2)
lines(1:K, size.test.975[1:K], col=2, lty=2)
## legend('topright', legend=c('Small', 'Large'),
## pch=1, col=1:2)
## End(Not run)