BANOVA.Normal {BANOVA} | R Documentation |
Estimation of BANOVA with a normally distributed dependent variable
Description
BANOVA.Normal
implements a Hierarchical Bayesian ANOVA for linear models with normal response and a normal heterogeneity distribution.
Usage
BANOVA.Normal(l1_formula = "NA", l2_formula = "NA", data,
id, l1_hyper = c(1, 1), l2_hyper = c(1, 1, 0.0001), burnin = 5000,
sample = 2000, thin = 10, adapt = 0, conv_speedup = F,
jags = runjags.getOption('jagspath'))
## S3 method for class 'BANOVA.Normal'
summary(object, ...)
## S3 method for class 'BANOVA.Normal'
predict(object, newdata = NULL,...)
## S3 method for class 'BANOVA.Normal'
print(x, ...)
Arguments
l1_formula |
formula for level 1 e.g. 'Y~X1+X2' |
l2_formula |
formula for level 2 e.g. '~Z1+Z2', response variable must not be included, if missing, the single level model will be generated |
data |
a data.frame in long format including all features in level 1 and level 2(covariates and categorical factors) and responses |
id |
subject ID of each response unit |
l1_hyper |
level 1 hyperparameters, c( |
l2_hyper |
level 2 hyperparameters, c(a, b, |
burnin |
the number of burn in draws in the MCMC algorithm, default 5000 |
sample |
target samples in the MCMC algorithm after thinning, default 2000 |
thin |
the number of samples in the MCMC algorithm that needs to be thinned, default 10 |
adapt |
the number of adaptive iterations, default 0 (see run.jags) |
conv_speedup |
whether to speedup convergence, default F |
jags |
the system call or path for activating 'JAGS'. Default calls findjags() to attempt to locate 'JAGS' on your system |
object |
object of class |
newdata |
test data, either a matrix, vector or a data frame. It must have the same format with the original data (the same column number) |
x |
object of class |
... |
additional arguments,currently ignored |
Details
Level 1 model:
y_i
~ Normal(\eta_i,\sigma^{-2})
where \eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p
, s_i
is the subject id of response i
, \sigma^{-2}
~ Gamma(\alpha,\beta
). see BANOVA-package
Value
BANOVA.Normal
returns an object of class "BANOVA.Normal"
. The returned object is a list containing:
anova.table |
table of effect sizes |
coef.tables |
table of estimated coefficients |
pvalue.table |
table of p-values |
dMatrice |
design matrices at level 1 and level 2 |
samples_l2_param |
posterior samples of level 2 parameters |
data |
original data.frame |
mf1 |
model.frame of level 1 |
mf2 |
model.frame of level 2 |
JAGSmodel |
'JAGS' model |
Examples
# Use the ipadstudy data set
data(ipadstudy)
# mean center covariates
ipadstudy$age <- ipadstudy$age - mean(ipadstudy$age)
ipadstudy$owner <- ipadstudy$owner - mean(ipadstudy$owner)
ipadstudy$gender <- ipadstudy$gender - mean(ipadstudy$gender)
# or use BANOVA.run based on 'Stan'
require(rstan)
res <- BANOVA.run(attitude~owner + age + gender + selfbrand*conspic,
data = ipadstudy, model_name = 'Normal', id = 'id',
iter = 100, thin = 1, chains = 2)