BANOVA.Binomial {BANOVA} | R Documentation |
Estimation of BANOVA with a Binomial dependent variable
Description
BANOVA.Binomial
implements a Hierarchical Bayesian ANOVA for a binomial response variable using a logit link and a normal heterogeneity distribution.
Usage
BANOVA.Binomial(l1_formula = "NA", l2_formula = "NA", data,
id, num_trials, l2_hyper = c(1, 1, 0.0001), burnin = 5000, sample = 2000,
thin = 10, adapt = 0, conv_speedup = F, jags = runjags.getOption('jagspath'))
## S3 method for class 'BANOVA.Binomial'
summary(object, ...)
## S3 method for class 'BANOVA.Binomial'
predict(object, newdata = NULL,...)
## S3 method for class 'BANOVA.Binomial'
print(x, ...)
Arguments
l1_formula |
formula for level 1 e.g. 'Y~X1+X2' |
l2_formula |
formula for level 2 e.g. '~Z1+Z2', response variable must not be included |
data |
a data.frame in long format including all features in level 1 and level 2(covariates and categorical factors) and responses |
id |
subject ID of each response unit |
num_trials |
the number of trials of each observation(=1, if it is bernoulli), the type is forced to be 'integer' |
l2_hyper |
level 2 hyperparameters, c(a, b, |
burnin |
the number of burn in draws in the MCMC algorithm, default 5000 |
sample |
target samples in the MCMC algorithm after thinning, default 2000 |
thin |
the number of samples in the MCMC algorithm that needs to be thinned, default 10 |
adapt |
the number of adaptive iterations, default 0 (see run.jags) |
conv_speedup |
whether to speedup convergence, default F |
jags |
the system call or path for activating 'JAGS'. Default calls findjags() to attempt to locate 'JAGS' on your system |
object |
object of class |
newdata |
test data, either a matrix, vector or a data frame. It must have the same format with the original data (the same column number) |
x |
object of class |
... |
additional arguments,currently ignored |
Details
Level 1 model:
y_i
~ Binomial(ntrials,p_i)
, p_i = logit^{-1}(\eta_i)
where ntrials is the binomial total for each record i, \eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p
, s_i
is the subject id of response i
. see BANOVA-package
Value
BANOVA.Binomial
returns an object of class "BANOVA.Bin"
. The returned object is a list containing:
anova.table |
table of effect sizes |
coef.tables |
table of estimated coefficients |
pvalue.table |
table of p-values |
dMatrice |
design matrices at level 1 and level 2 |
samples_l2_param |
posterior samples of level 2 parameters |
data |
original data.frame |
mf1 |
model.frame of level 1 |
mf2 |
model.frame of level 2 |
JAGSmodel |
'JAGS' model |
Examples
data(colorad)
# mean center Blur for effect coding
colorad$blur <- colorad$blur - mean(colorad$blur)
res <- BANOVA.Binomial(y~typic, ~color*blur, colorad, colorad$id, as.integer(16),
burnin = 5000, sample = 2000, thin = 10)
summary(res)
# or use BANOVA.run
require(rstan)
res0 <- BANOVA.run(y~typic, ~color*blurfac, data = colorad, model_name = 'Binomial',
id = 'id', num_trials = as.integer(16), iter = 100, thin = 1, chains = 2)
summary(res0)
table.predictions(res0)
# only in-model variables(except numeric variables) will be used
predict(res0, c(1, 0, 8, 2, 1, 0.03400759))