weighted_anchor_regression {AnchorRegression} | R Documentation |
weighted_anchor_regression
Description
Estimates weighted Anchor Regression coefficients
Usage
weighted_anchor_regression(
data_x_list,
data_anchor_list,
gamma,
target_variable,
anchor_model_pre = NULL,
test_split = 0.4,
lambda = 0
)
Arguments
data_x_list |
list containing coefficient dataframes for different environments |
data_anchor_list |
list containing anchor dataframes for different environments |
gamma |
is the regularization parameter for the Anchor Regression |
target_variable |
is the target variable name contained in the x dataframe |
anchor_model_pre |
is the pre estimated model for the Anchor Regression. In case of NULL a new model is estimated. |
test_split |
is desired test/train split for the estimation |
lambda |
penalization coefficient for Anchor Shrinkage. Initially set to 0. |
Value
A list estimated coefficients with names, weights and the raw coefficient matrix
Examples
environments <- 10 # number of observed environments
# populate list with generated data of x and anchor
data_x_list <- c()
data_anchor_list <- c()
for(e in 1:environments){
x <- as.data.frame(matrix(data = rnorm(100),nrow = 100,ncol = 10))
anchor <- as.data.frame(matrix(data = rnorm(200),nrow = 100,ncol = 2))
colnames(anchor) <- c('X1','X2')
data_x_list[[e]] <- x
data_anchor_list[[e]] <- anchor
}
# estimate model
gamma <- 2
target_variable <- 'V2'
weighted_anchor_regression(data_x_list,
data_anchor_list,
gamma,
target_variable,
anchor_model_pre=NULL,
test_split=0.4,
lambda=0)
[Package AnchorRegression version 0.1.3 Index]