getExpressionEstimates {AnaCoDa} | R Documentation |
Returns the estimated phi posterior for a gene
Description
Posterior estimates for the phi value of specified genes
Usage
getExpressionEstimates(
parameter,
gene.index,
samples,
quantiles = c(0.025, 0.975),
genome = NULL
)
Arguments
parameter |
on object created by |
gene.index |
a integer or vector of integers representing the gene(s) of interesst. |
samples |
number of samples for the posterior estimate |
quantiles |
vector of quantiles, (default: c(0.025, 0.975)) |
genome |
if genome is given, then will include gene ids in output (default is NULL) |
Details
The returned vector is unnamed as gene ids are only stored in the genome
object,
but the gene.index
vector can be used to match the assignment to the genome.
Value
returns a vector with the mixture assignment of each gene corresbonding to gene.index
in the same order as the genome.
Examples
genome_file <- system.file("extdata", "genome.fasta", package = "AnaCoDa")
genome <- initializeGenomeObject(file = genome_file)
sphi_init <- c(1,1)
numMixtures <- 2
geneAssignment <- c(rep(1,floor(length(genome)/2)),rep(2,ceiling(length(genome)/2)))
parameter <- initializeParameterObject(genome = genome, sphi = sphi_init,
num.mixtures = numMixtures,
gene.assignment = geneAssignment,
mixture.definition = "allUnique")
model <- initializeModelObject(parameter = parameter, model = "ROC")
samples <- 2500
thinning <- 50
adaptiveWidth <- 25
mcmc <- initializeMCMCObject(samples = samples, thinning = thinning,
adaptive.width=adaptiveWidth, est.expression=TRUE,
est.csp=TRUE, est.hyper=TRUE, est.mix = TRUE)
divergence.iteration <- 10
## Not run:
runMCMC(mcmc = mcmc, genome = genome, model = model,
ncores = 4, divergence.iteration = divergence.iteration)
# get the estimated expression values for all genes based on the mixture
# they are assigned to at each step
estimatedExpression <- getExpressionEstimates(parameter, 1:length(genome), 1000)
## End(Not run)
[Package AnaCoDa version 0.1.4.4 Index]