getCSPEstimates {AnaCoDa} | R Documentation |
Return Codon Specific Paramters (or write to csv) estimates as data.frame
Description
getCSPEstimates
returns the codon specific
parameter estimates for a given parameter and mixture or write it to a csv file.
Usage
getCSPEstimates(
parameter,
filename = NULL,
mixture = 1,
samples = 10,
relative.to.optimal.codon = T,
report.original.ref = T,
log.scale = F
)
Arguments
parameter |
parameter an object created by |
filename |
Posterior estimates will be written to file (format: csv). Filename will be in the format <parameter_name>_<filename>.csv. |
mixture |
estimates for which mixture should be returned |
samples |
The number of samples used for the posterior estimates. |
relative.to.optimal.codon |
Boolean determining if parameters should be relative to the preferred codon or the alphabetically last codon (Default=TRUE). Only applies to ROC and FONSE models |
report.original.ref |
Include the original reference codon (Default = TRUE). Note this is only included for the purposes of simulations, which expect the input parameter file to be in a specific format. Later version of AnaCoDa will remove this. |
log.scale |
Calculate posterior means, standard deviation, and posterior probability intervals on the natural log scale. Should be used for PA and PANSE models only. |
Value
returns a list data.frame with the posterior estimates of the models
codon specific parameters or writes it directly to a csv file if filename
is specified
Examples
genome_file <- system.file("extdata", "genome.fasta", package = "AnaCoDa")
genome <- initializeGenomeObject(file = genome_file)
sphi_init <- c(1,1)
numMixtures <- 2
geneAssignment <- c(rep(1,floor(length(genome)/2)),rep(2,ceiling(length(genome)/2)))
parameter <- initializeParameterObject(genome = genome, sphi = sphi_init,
num.mixtures = numMixtures,
gene.assignment = geneAssignment,
mixture.definition = "allUnique")
model <- initializeModelObject(parameter = parameter, model = "ROC")
samples <- 2500
thinning <- 50
adaptiveWidth <- 25
mcmc <- initializeMCMCObject(samples = samples, thinning = thinning,
adaptive.width=adaptiveWidth, est.expression=TRUE,
est.csp=TRUE, est.hyper=TRUE, est.mix = TRUE)
divergence.iteration <- 10
## Not run:
runMCMC(mcmc = mcmc, genome = genome, model = model,
ncores = 4, divergence.iteration = divergence.iteration)
## return estimates for codon specific parameters
csp_mat <- getCSPEstimates(parameter)
# write the result directly to the filesystem as a csv file. No values are returned
getCSPEstimates(parameter, filename=file.path(tempdir(), "test.csv"))
## End(Not run)