MLEGO {AmoudSurv} | R Documentation |
General Odds (GO) Model.
Description
A Tractable Parametric General Odds (GO) model's Log-likelihood, MLE and information criterion values. Baseline hazards: NGLL,GLL,MLL,PGW, GG, EW, MKW, LL, TLL, SLL,CLL,SCLL,ATLL, and ASLL
Usage
MLEGO(
init,
times,
status,
n,
basehaz,
z,
zt,
method = "BFGS",
hessian = TRUE,
conf.int = 0.95,
maxit = 1000,
log = FALSE
)
Arguments
init |
: initial points for optimisation |
times |
: survival times |
status |
: vital status (1 - dead, 0 - alive) |
n |
: The number of the data set |
basehaz |
: baseline hazard structure including baseline (New generalized log-logistic general odds "NGLLGO" model, generalized log-logisitic general odds "GLLGO" model, modified log-logistic general odds "MLLGO" model,exponentiated Weibull general odds "EWGO" model, power generalized weibull general odds "PGWGO" model, generalized gamma general odds "GGGO" model, modified kumaraswamy Weibull general odds "MKWGO" model, log-logistic general odds "LLGO" model, tangent-log-logistic general odds "TLLGO" model, sine-log-logistic general odds "SLLGO" model, cosine log-logistic general odds "CLLGO" model,secant-log-logistic general odds "SCLLGO" model, arcsine-log-logistic general odds "ASLLGO" model, arctangent-log-logistic general odds "ATLLGO" model, Weibull general odds "WGO" model, gamma general odds "WGO" model, and log-normal general odds "ATLNGO" model.) |
z |
: design matrix for odds-level effects (p x n), p >= 1 |
zt |
: design matrix for time-dependent effects (q x n), q >= 1 |
method |
:"optim" or a method from "nlminb".The methods supported are: BFGS (default), "L-BFGS", "Nelder-Mead", "SANN", "CG", and "Brent". |
hessian |
:A function to return (as a matrix) the hessian for those methods that can use this information. |
conf.int |
: confidence level |
maxit |
:The maximum number of iterations. Defaults to 1000 |
log |
:log scale (TRUE or FALSE) |
Value
a list containing the output of the optimisation (OPT) and the log-likelihood function (loglik)
Author(s)
Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau abdisalam.hassan@amoud.edu.so
Examples
#Example #1
data(alloauto)
time<-alloauto$time
delta<-alloauto$delta
z<-alloauto$type
MLEGO(init = c(1.0,0.50,0.50,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "PGWGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)
#Example #2
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
MLEGO(init = c(1.0,0.50,0.45,0.5),times = time,status = delta,n=nrow(z),
basehaz = "TLLGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,
log=FALSE)
#Example #3
data("gastric")
time<-gastric$time
delta<-gastric$status
z<-gastric$trt
MLEGO(init = c(1.0,1.0,0.50,0.5,0.5),times = time,status = delta,n=nrow(z),
basehaz = "GLLGO",z = z,zt=z,method = "BFGS",hessian=TRUE, conf.int=0.95,maxit = 1000,log=FALSE)