population.shift {AlleleShift} | R Documentation |
Shifts of Populations in Environmental Space as Response to Climate Change
Description
The function plots the locations of each population in baseline and future climates. Arrows indicate the shifts in positions of the populations.
Usage
population.shift(baseline.env.data, future.env.data,
option=c("PCA", "RDA"), vector.multiply=1)
environmental.novel(baseline.env.data, future.env.data)
Arguments
baseline.env.data |
Baseline (bio-)climatic conditions for the populations. |
future.env.data |
Changed (bio-)climatic conditions in future/past for the populations. |
option |
Should an explanatory variable corresponding to the climate period be used by |
vector.multiply |
Multiplier for vector scores in the ordination diagrams. |
Details
See Kindt (2020) for alternative methods of generating ordination diagrams via vegan, BiodiversityR and ggplot2.
Function environmental.novel
identifies populations with future (or past) environmental conditions that are outside the baseline range. The function further calculates the probability of observing the future condition via pnorm
with the mean and standard deviation from the baseline conditions. Where one or several variables are outside the baseline range, data are provided for the variable with the smallest probability.
Value
The main function generates an ordination diagram that depicts changes between baseline and future/past conditions for the populations.
Author(s)
Roeland Kindt (World Agroforestry, CIFOR-ICRAF)
References
Kindt R. 2020. Ordination graphs with vegan, BiodiversityR and ggplot2. https://rpubs.com/Roeland-KINDT
Examples
data(Poptri.baseline.env)
data(Poptri.future.env)
environmental.novel(Poptri.baseline.env, Poptri.future.env)
# as if for past climates
environmental.novel(Poptri.future.env, Poptri.baseline.env)
VIF.select <- VIF.subset(Poptri.baseline.env,
keep=c("MAT", "CMI"),
cor.plot=FALSE)
VIF.select$vars.included
baseline.env <- Poptri.baseline.env[, VIF.select$vars.included]
future.env <- Poptri.future.env[, VIF.select$vars.included]
environmental.novel(baseline.env, future.env)
plotA <- population.shift(baseline.env,
future.env,
option="PCA")
plotA
plotB <- population.shift(baseline.env,
future.env,
option="RDA")
plotB