thompson {AgroReg} | R Documentation |
Analysis: Thompson
Description
This function performs Thompson regression analysis.
Usage
thompson(
trat,
resp,
sample.curve = 1000,
ylab = "Dependent",
xlab = "Independent",
theme = theme_classic(),
legend.position = "top",
error = "SE",
r2 = "all",
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)
Arguments
trat |
Numeric vector with dependent variable. |
resp |
Numeric vector with independent variable. |
sample.curve |
Provide the number of observations to simulate curvature (default is 1000) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_bw()) |
legend.position |
legend position (default is c(0.3,0.8)) |
error |
Error bar (It can be SE - default, SD or FALSE) |
r2 |
coefficient of determination of the mean or all values (default is all) |
point |
defines whether you want to plot all points ("all") or only the mean ("mean") |
width.bar |
Bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
linetype |
line type |
pointshape |
format point (default is 21) |
fillshape |
Fill shape |
colorline |
Color lines |
round |
round equation |
yname.formula |
Name of y in the equation |
xname.formula |
Name of x in the equation |
comment |
Add text after equation |
fontfamily |
Font family |
Details
The logarithmic model is defined by:
y = \beta_1 ln(\cdot x) + \beta_2 ln(\cdot x)^2
Value
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
References
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).
Sadeghi, E., Haghighi Asl, A., & Movagharnejad, K. (2019). Mathematical modelling of infrared-dried kiwifruit slices under natural and forced convection. Food science & nutrition, 7(11), 3589-3606.
Examples
library(AgroReg)
resp=c(10,8,6.8,6,5,4.3,4.1,4.2,4.1)
trat=seq(1,9,1)
thompson(trat,resp)