SH {AgroReg} | R Documentation |
Analysis: Steinhart-Hart
Description
The Steinhart-Hart model. The Steinhart-Hart equation is a model used to explain the behavior of a semiconductor at different temperatures, however, Zhai et al. (2020) used this model to relate plant density and grain yield.
Usage
SH(
trat,
resp,
initial = NA,
sample.curve = 1000,
ylab = "Dependent",
xlab = "Independent",
theme = theme_classic(),
legend.position = "top",
r2 = "all",
error = "SE",
point = "all",
width.bar = NA,
scale = "none",
textsize = 12,
pointsize = 4.5,
linesize = 0.8,
linetype = 1,
pointshape = 21,
fillshape = "gray",
colorline = "black",
round = NA,
yname.formula = "y",
xname.formula = "x",
comment = NA,
fontfamily = "sans"
)
Arguments
trat |
Numeric vector with dependent variable. |
resp |
Numeric vector with independent variable. |
initial |
Starting estimates |
sample.curve |
Provide the number of observations to simulate curvature (default is 1000) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
Treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_bw()) |
legend.position |
Legend position (default is "top") |
r2 |
Coefficient of determination of the mean or all values (default is all) |
error |
Error bar (It can be SE - default, SD or FALSE) |
point |
Defines whether you want to plot all points ("all") or only the mean ("mean") |
width.bar |
Bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
Shape size |
linesize |
Line size |
linetype |
line type |
pointshape |
Format point (default is 21) |
fillshape |
Fill shape |
colorline |
Color lines |
round |
round equation |
yname.formula |
Name of y in the equation |
xname.formula |
Name of x in the equation |
comment |
Add text after equation |
fontfamily |
Font family |
Details
The model function for the Steinhart-Hart model is:
y = \frac{1}{A+B \times ln(x)+C \times ln(x)^3}
Value
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Author(s)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
References
Zhai, L., Li, H., Song, S., Zhai, L., Ming, B., Li, S., ... & Zhang, L. (2021). Intra-specific competition affects the density tolerance and grain yield of maize hybrids. Agronomy Journal, 113(1), 224-23. doi:10.1002/agj2.20438
See Also
Examples
library(AgroReg)
data("aristolochia")
attach(aristolochia)
SH(trat,resp)