| MM {AgroReg} | R Documentation | 
Analysis: Michaelis-Menten
Description
This function performs regression analysis using the Michaelis-Menten model.
Usage
MM(
  trat,
  resp,
  npar = "mm2",
  sample.curve = 1000,
  error = "SE",
  ylab = "Dependent",
  xlab = "Independent",
  theme = theme_classic(),
  legend.position = "top",
  point = "all",
  width.bar = NA,
  r2 = "all",
  ic = FALSE,
  fill.ic = "gray70",
  alpha.ic = 0.5,
  textsize = 12,
  pointsize = 4.5,
  linesize = 0.8,
  linetype = 1,
  pointshape = 21,
  fillshape = "gray",
  colorline = "black",
  round = NA,
  yname.formula = "y",
  xname.formula = "x",
  comment = NA,
  fontfamily = "sans"
)
Arguments
| trat | Numeric vector with dependent variable. | 
| resp | Numeric vector with independent variable. | 
| npar | Number of parameters (mm2 or mm3) | 
| sample.curve | Provide the number of observations to simulate curvature (default is 1000) | 
| error | Error bar (It can be SE - default, SD or FALSE) | 
| ylab | Variable response name (Accepts the expression() function) | 
| xlab | treatments name (Accepts the expression() function) | 
| theme | ggplot2 theme (default is theme_bw()) | 
| legend.position | legend position (default is "top") | 
| point | defines whether you want to plot all points ("all") or only the mean ("mean") | 
| width.bar | Bar width | 
| r2 | coefficient of determination of the mean or all values (default is all) | 
| ic | Add interval of confidence | 
| fill.ic | Color interval of confidence | 
| alpha.ic | confidence interval transparency level | 
| textsize | Font size | 
| pointsize | shape size | 
| linesize | line size | 
| linetype | line type | 
| pointshape | format point (default is 21) | 
| fillshape | Fill shape | 
| colorline | Color lines | 
| round | round equation | 
| yname.formula | Name of y in the equation | 
| xname.formula | Name of x in the equation | 
| comment | Add text after equation | 
| fontfamily | Font family | 
Details
The two-parameter Michaelis-Menten model is defined by:
y = \frac{Vm \times x}{k + x}
The three-parameter Michaelis-Menten model is defined by:
y = c + \frac{Vm \times x}{k + x}
Value
The function returns a list containing the coefficients and their respective values of p; statistical parameters such as AIC, BIC, pseudo-R2, RMSE (root mean square error); largest and smallest estimated value and the graph using ggplot2 with the equation automatically.
Author(s)
Gabriel Danilo Shimizu
References
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley & Sons (p. 330).
Examples
data("granada")
attach(granada)
MM(time,WL)
MM(time,WL,npar="mm3")