rARS {AdapSamp} | R Documentation |
Adaptive Rejection Sampling Algorithm
Description
rARS generates a sequence of random numbers using the adaptive rejection sampling algorithm.
Usage
rARS(n, formula, min = -Inf, max = Inf, sp)
Arguments
n |
Desired sample size; |
formula |
Kernal of the target density; |
min , max |
Domain including positive and negative infinity of the target distribution; |
sp |
Supporting set. |
Author(s)
Dong Zhang <dzhang0716@126.com>
Examples
# Example 1: Standard normal distribution
x1 <- rARS(100,"exp(-x^2/2)",-Inf,Inf,c(-2,2))
# Example 2: Truncated normal distribution
x2 <- rARS(100,"exp(-x^2/2)",-2.1,2.1,c(-2,2))
# Example 3: Normal distribution with mean=2 and sd=2
x3 <- rARS(100,"exp(-(x-2)^2/(2*4))",-Inf,Inf,c(-3,3))
# Example 4: Exponential distribution with rate=3
x4 <- rARS(100,"exp(-3*x)",0,Inf,c(2,3,100))
# Example 5: Beta distribution with alpha=3 and beta=4
x5 <- rARS(100,"x^2*(1-x)^3",0,1,c(0.4,0.6))
# Example 6: Gamma distribution with alpha=5 and lambda=2
x6 <- rARS(100,"x^(5-1)*exp(-2*x)",0,Inf,c(1,10))
# Example 7: Student distribution with df=10
x7 <- rARS(100,"(1+x^2/10)^(-(10+1)/2)",-Inf,Inf,c(-10,2))
# Example 8: F distribution with m=10 and n=5
x8 <- rARS(100,"x^(10/2-1)/(1+10/5*x)^(15/2)",0,Inf,c(3,10))
# Example 9:Cauchy distribution
x9 <- rARS(100,"1/(1+(x-1)^2)",-Inf,Inf,c(-2,2,10))
# Example 10:Rayleigh distribution with lambda=1
x10 <- rARS(100,"2*x*exp(-x^2)",0,Inf,c(0.01,10))
[Package AdapSamp version 1.1.1 Index]