AdMit {AdMit} | R Documentation |
Adaptive Mixture of Student-t Distributions
Description
Function which performs the fitting of an adaptive mixture of Student-t distributions to approximate a target density through its kernel function
Usage
AdMit(KERNEL, mu0, Sigma0 = NULL, control = list(), ...)
Arguments
KERNEL |
kernel function of the target density on which the adaptive mixture is fitted. This
function should be vectorized for speed purposes (i.e., its first
argument should be a matrix and its output a vector). Moreover, the function must contain
the logical argument |
mu0 |
initial value in the first stage optimization (for the location of
the first Student-t component) in the adaptive mixture, or
location of the first Student-t component if |
Sigma0 |
scale matrix of the first Student-t component (square, symmetric and positive definite). Default:
|
control |
control parameters (see *Details*). |
... |
further arguments to be passed to |
Details
The argument KERNEL
is the kernel function of the target
density, and it should be vectorized for speed purposes.
As a first example, consider the kernel function proposed by Gelman-Meng (1991):
k(x_1,x_2) = \exp\left( -\frac{1}{2} [A x_1^2 x_2^2 + x_1^2 + x_2^2
- 2 B x_1 x_2 - 2 C_1 x_1 - 2 C_2 x_2] \right)
where commonly used values
are A=1
, B=0
, C_1=3
and C_2=3
.
A vectorized implementation of this function might be:
GelmanMeng <- function(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE) { if (is.vector(x)) x <- matrix(x, nrow = 1) r <- -.5 * (A * x[,1]^2 * x[,2]^2 + x[,1]^2 + x[,2]^2 - 2 * B * x[,1] * x[,2] - 2 * C1 * x[,1] - 2 * C2 * x[,2]) if (!log) r <- exp(r) as.vector(r) }
This way, we may supply a point (x_1,x_2)
for x
and the function will output a single value (i.e., the kernel
estimated at this point). But the function is vectorized, in the sense
that we may supply a (N \times 2)
matrix
of values for x
, where rows of x
are
points (x_1,x_2)
and the output will be a vector of
length N
, containing the kernel values for these points.
Since the AdMit
procedure evaluates KERNEL
for a
large number of points, a vectorized implementation is important. Note
also the additional argument log = TRUE
which is used for
numerical stability.
As a second example, consider the following (simple) econometric model:
y_t \sim \, i.i.d. \, N(\mu,\sigma^2) \quad t=1,\ldots,T
where \mu
is the mean value and \sigma
is the
standard deviation. Our purpose is to estimate
\theta = (\mu,\sigma)
within a Bayesian
framework, based on a vector y
of T
observations; the
kernel thus consists of the product of the
prior and the likelihood function. As previously mentioned, the
kernel function should be vectorized, i.e., treat a (N \times 2)
matrix of points
\theta
for which the kernel will be evaluated.
Using the common (Jeffreys) prior p(\theta) = \frac{1}{\sigma}
for \sigma > 0
, a vectorized implementation of the
kernel function might be:
KERNEL <- function(theta, y, log = TRUE) { if (is.vector(theta)) theta <- matrix(theta, nrow = 1) ## sub function which returns the log-kernel for a given ## thetai value (i.e., a given row of theta) KERNEL_sub <- function(thetai) { if (thetai[2] > 0) ## check if sigma>0 { ## if yes, compute the log-kernel at thetai r <- - log(thetai[2]) + sum(dnorm(y, thetai[1], thetai[2], TRUE)) } else { ## if no, returns -Infinity r <- -Inf } as.numeric(r) } ## 'apply' on the rows of theta (faster than a for loop) r <- apply(theta, 1, KERNEL_sub) if (!log) r <- exp(r) as.numeric(r) }
Since this kernel function also depends on the vector y
, it
must be passed to KERNEL
in the AdMit
function. This is
achieved via the argument \ldots
, i.e., AdMit(KERNEL, mu = c(0, 1), y = y)
.
To gain even more speed, implementation of KERNEL
might rely on C or Fortran
code using the functions .C
and .Fortran
. An example is
provided in the file ‘AdMitJSS.R’ in the package's folder.
The argument control
is a list that can supply any of
the following components:
Ns
number of draws used in the evaluation of the importance sampling weights (integer number not smaller than 100). Default:
Ns = 1e5
.Np
number of draws used in the optimization of the mixing probabilities (integer number not smaller than 100 and not larger than
Ns
). Default:Np = 1e3
.Hmax
maximum number of Student-t components in the adaptive mixture (integer number not smaller than one). Default:
Hmax = 10
.df
degrees of freedom parameter of the Student-t components (real number not smaller than one). Default:
df = 1
.CVtol
tolerance for the relative change of the coefficient of variation (real number in [0,1]). The adaptive algorithm stops if the new component leads to a relative change in the coefficient of variation that is smaller or equal than
CVtol
. Default:CVtol = 0.1
, i.e., 10%.weightNC
weight assigned to the new Student-t component of the adaptive mixture as a starting value in the optimization of the mixing probabilities (real number in [0,1]). Default:
weightNC = 0.1
, i.e., 10%.trace
tracing information on the adaptive fitting procedure (logical). Default:
trace = FALSE
, i.e., no tracing information.IS
should importance sampling be used to estimate the mode and the scale matrix of the Student-t components (logical). Default:
IS = FALSE
, i.e., use numerical optimization instead.ISpercent
vector of percentage(s) of largest weights used to estimate the mode and the scale matrix of the Student-t components of the adaptive mixture by importance sampling (real number(s) in [0,1]). Default:
ISpercent = c(0.05, 0.15, 0.3)
, i.e., 5%, 15% and 30%.ISscale
vector of scaling factor(s) used to rescale the scale matrix of the mixture components (real positive numbers). Default:
ISscale = c(1, 0.25, 4)
.trace.mu
Tracing information on the progress in the optimization of the mode of the mixture components (non-negative integer number). Higher values may produce more tracing information (see the source code of the function
optim
for further details). Default:trace.mu = 0
, i.e., no tracing information.maxit.mu
maximum number of iterations used in the optimization of the modes of the mixture components (positive integer). Default:
maxit.mu = 500
.reltol.mu
relative convergence tolerance used in the optimization of the modes of the mixture components (real number in [0,1]). Default:
reltol.mu = 1e-8
.trace.p
,maxit.p
,reltol.p
the same as for the arguments above, but for the optimization of the mixing probabilities of the mixture components.
Value
A list with the following components:
CV
: vector (of length H
) of coefficients of variation of
the importance sampling weights.
mit
: list (of length 4) containing information on the fitted mixture of
Student-t distributions, with the following components:
p
: vector (of length H
) of mixing probabilities.
mu
: matrix (of size H \times d
) containing the
vectors of modes (in row) of the mixture components.
Sigma
: matrix (of size H \times d^2
) containing the scale
matrices (in row) of the mixture components.
df
: degrees of freedom parameter of the Student-t components.
where H (\geq 1)
is the number of components in the adaptive
mixture of Student-t distributions and d (\geq 1)
is
the dimension of the first argument in KERNEL
.
summary
: data frame containing information on the optimization
procedures. It returns for each component of the adaptive mixture of
Student-t distribution: 1. the method used to estimate the mode
and the scale matrix of the Student-t component (‘USER’ if Sigma0
is
provided by the user; numerical optimization: ‘BFGS’, ‘Nelder-Mead’;
importance sampling: ‘IS’, with percentage(s) of importance weights
used and scaling factor(s)); 2. the time required for this optimization;
3. the method used to estimate the mixing probabilities
(‘NLMINB’, ‘BFGS’, ‘Nelder-Mead’, ‘NONE’); 4. the time required for this
optimization; 5. the coefficient of variation of the importance
sampling weights.
Note
By using AdMit
you agree to the following rules:
You must cite Ardia et al. (2009a,b) in working papers and published papers that use
AdMit
. Usecitation("AdMit")
.You must place the following URL in a footnote to help others find
AdMit
: https://CRAN.R-project.org/package=AdMit.You assume all risk for the use of
AdMit
.
Further details and examples of the R package AdMit
can be found in Ardia et al. (2009a,b).
Further details on the core algorithm are given in Hoogerheide (2006), Hoogerheide, Kaashoek, van Dijk (2007) and Hoogerheide, van Dijk (2008).
The adaptive mixture mit
returned by the function AdMit
is used by the
function AdMitIS
to perform importance sampling using
mit
as the importance density or by the function AdMitMH
to perform
independence chain Metropolis-Hastings sampling using mit
as the
candidate density.
Author(s)
David Ardia for the R port,
Lennart F. Hoogerheide and Herman K. van Dijk for the AdMit
algorithm.
References
Ardia, D., Hoogerheide, L.F., van Dijk, H.K. (2009a). AdMit: Adaptive Mixture of Student-t Distributions. R Journal 1(1), pp.25-30. doi: 10.32614/RJ-2009-003
Ardia, D., Hoogerheide, L.F., van Dijk, H.K. (2009b). Adaptive Mixture of Student-t Distributions as a Flexible Candidate Distribution for Efficient Simulation: The R Package AdMit. Journal of Statistical Software 29(3), pp.1-32. doi: 10.18637/jss.v029.i03
Gelman, A., Meng, X.-L. (1991). A Note on Bivariate Distributions That Are Conditionally Normal. The American Statistician 45(2), pp.125-126.
Hoogerheide, L.F. (2006). Essays on Neural Network Sampling Methods and Instrumental Variables. PhD thesis, Tinbergen Institute, Erasmus University Rotterdam (NL). ISBN: 9051708261. (Book nr. 379 of the Tinbergen Institute Research Series.)
Hoogerheide, L.F., Kaashoek, J.F., van Dijk, H.K. (2007). On the Shape of Posterior Densities and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Application of Flexible Sampling Methods using Neural Networks. Journal of Econometrics 139(1), pp.154-180.
Hoogerheide, L.F., van Dijk, H.K. (2008). Possibly Ill-Behaved Posteriors in Econometric Models: On the Connection between Model Structures, Non-elliptical Credible Sets and Neural Network Simulation Techniques. Tinbergen Institute discussion paper 2008-036/4.
See Also
AdMitIS
for importance sampling using an
adaptive mixture of Student-t distributions as the importance density,
AdMitMH
for the independence chain Metropolis-Hastings
algorithm using an adaptive mixture of Student-t distributions as
the candidate density.
Examples
## NB : Low number of draws for speedup. Consider using more draws!
## Gelman and Meng (1991) kernel function
GelmanMeng <- function(x, A = 1, B = 0, C1 = 3, C2 = 3, log = TRUE)
{
if (is.vector(x))
x <- matrix(x, nrow = 1)
r <- -.5 * (A * x[,1]^2 * x[,2]^2 + x[,1]^2 + x[,2]^2
- 2 * B * x[,1] * x[,2] - 2 * C1 * x[,1] - 2 * C2 * x[,2])
if (!log)
r <- exp(r)
as.vector(r)
}
## Run AdMit (with default values)
set.seed(1234)
outAdMit <- AdMit(GelmanMeng, mu0 = c(0.0, 0.1), control = list(Ns = 1e4))
print(outAdMit)
## Run AdMit (using importance sampling to estimate
## the modes and the scale matrices)
set.seed(1234)
outAdMit <- AdMit(KERNEL = GelmanMeng,
mu0 = c(0.0, 0.1),
control = list(IS = TRUE, Ns = 1e4))
print(outAdMit)