BellBX distribution {ActuarialM}R Documentation

Bell Burr-X distribution

Description

Computes the value at risk and expected shortfall based on the Bell Burr-X (BellBX) distribution. The CDF of the Bell G family is as follows:

H(x)=\frac{1-\exp\left[-e^{\lambda}\left(1-e^{-\lambda K(x)}\right)\right]}{1-\exp\Bigl(1-e^{\lambda}\Bigr)};\qquad\lambda>0,

where K(x) represents the baseline Burr-X CDF, it is given by

K(x)=\left[1-\exp(-x^{2})\right]^{a};\qquad a>0.

By setting K(x) in the above Equation, yields the CDF of the BellBX distribution. The following expression can be used to calculate the VaR:

VaR_{p}(X)=\left(-\ln\left[1-\left\{ 1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-p\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right\} ^{1/a}\right]\right)^{0.5},

where p \in (0,1). The ES can be computed from the following expression:

ES_{p}(X)=\frac{1}{p}\intop_{0}^{p}\left(-\ln\left[1-\left\{ 1-\left(\frac{1}{\lambda}\left[\ln\left(\left[\ln\left(1-z\left[1-\exp\Bigl(1-e^{\lambda}\Bigr)\right]\right)\right]+e^{\lambda}\right)\right]\right)\right\} ^{1/a}\right]\right)^{0.5}dz.

Usage

vBellBX(p, a, lambda, log.p = FALSE, lower.tail = TRUE)
eBellBX(p, a, lambda)

Arguments

p

A vector of probablities p \in (0,1).

lambda

The strictly positive parameter of the Bell G family (\lambda > 0).

a

The strictly positive scale parameter of the baseline Burr-X distribution (a > 0).

lower.tail

if FALSE then 1-H(x) are returned and quantiles are computed for 1-p.

log.p

if TRUE then log(H(x)) are returned and quantiles are computed for exp(p).

Details

The functions allow to compute the value at risk and the expected shortfall of the BellBX distribution.

Value

vBellBX gives the value at risk. eBellBX gives the expected shortfall.

Author(s)

Muhammad Imran and M.H. Tahir.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com and M.H. Tahir mht@iub.edu.pk.

References

Fayomi, A., Tahir, M. H., Algarni, A., Imran, M., & Jamal, F. (2022). A new useful exponential model with applications to quality control and actuarial data. Computational Intelligence and Neuroscience, 2022.

Alsadat, N., Imran, M., Tahir, M. H., Jamal, F., Ahmad, H., & Elgarhy, M. (2023). Compounded Bell-G class of statistical models with applications to COVID-19 and actuarial data. Open Physics, 21(1), 20220242.

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. John Wiley & Sons.

See Also

eBellB12, eBellL

Examples

p=runif(10,min=0,max=1)
vBellBX(p,1.2,2)
eBellBX(p,1.2,2)

[Package ActuarialM version 0.1.0 Index]