step1_sample_mvt {AccelStab} | R Documentation |
Sample the Multivariate t Distribution
Description
Take a selected number of samples from the multivariate t distribution (mvt).
Usage
step1_sample_mvt(
data,
y,
.time,
K = NULL,
C = NULL,
validation = NULL,
draw,
parms = NULL,
reparameterisation = FALSE,
zero_order = FALSE
)
Arguments
data |
Dataframe containing accelerated stability data (required). |
y |
Name of decreasing variable (e.g. concentration) contained within data (required). |
.time |
Time variable contained within data (required). |
K |
Kelvin variable (numeric or column name) (optional). |
C |
Celsius variable (numeric or column name) (optional). |
validation |
Validation dummy variable (column name) (optional). |
draw |
Number of samples to draw from mvt (required). |
parms |
Starting values for the parameters as a list - k1, k2, k3, and c0 (optional). |
reparameterisation |
Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2. |
zero_order |
Set kinetic order, k3, to zero (straight lines). |
Details
Using the provided data the function creates a fit of the Šesták–Berggren kinetic model and then draws a selected number of samples from the mvt of the model parameters.
Value
A matrix containing parameter draws from the mvt distribution.
Examples
#load antigenicity data.
data(antigenicity)
#Basic use of the step1_sample_mvt function with C column defined and 1000 draws.
sample1 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", draw = 1000)
#Basic use of the step1_sample_mvt function with K column defined and 50000 draws
sample2 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
K = "K", draw = 50000)
#reparameterisation is TRUE and 10000 draws.
sample3 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", reparameterisation = TRUE, draw = 10000)