step1_down_rmse {AccelStab} | R Documentation |
Step1 Down Model Root Mean Square Error Calculation
Description
Calculate Root Mean Square Error (RMSE) for the one-step Šesták–Berggren kinetic model.
Usage
step1_down_rmse(
data,
y,
.time,
K = NULL,
C = NULL,
parms,
reparameterisation = FALSE
)
Arguments
data |
Dataframe containing accelerated stability data (required). |
y |
Name of decreasing variable (e.g. concentration) contained within data (required). |
.time |
Time variable contained within data (required). |
K |
Kelvin variable (numeric or column name) (optional). |
C |
Celsius variable (numeric or column name) (optional). |
parms |
Values for the parameters as a list - k1, k2, k3, and c0. If multiple are provided all combinations will be used (required). |
reparameterisation |
Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2. |
Details
Calculate RMSE for the one-step Šesták–Berggren kinetic (non-linear) model using user provided parameters.
Value
A data frame containing one row for each RMSE calculation
Examples
#load antigenicity and potency data.
data(antigenicity)
data(potency)
#Basic use of the step1_down_rmse function with C column defined.
rmse1 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", parms = list(c0 = c(96,98,100), k1 = c(42,45),
k2 = c(12000,12500), k3 = c(8,9,10)))
#Basic use of the step1_down_rmse function with K column defined.
rmse2 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
K = "K", parms = list(c0 = c(98), k1 = c(42,45), k2 = c(12500), k3 = c(8,9)))
#reparameterisation is TRUE.
rmse3 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", parms = list(c0 = c(100,95), k1 = c(2,2.5), k2 = c(12000,13000),
k3 = c(9,10)), reparameterisation = TRUE)