step1_down {AccelStab} | R Documentation |
Step1 Down Model
Description
Fit the one-step Šesták–Berggren kinetic model.
Usage
step1_down(
data,
y,
.time,
K = NULL,
C = NULL,
validation = NULL,
draw = 10000,
parms = NULL,
temp_pred_C = NULL,
max_time_pred = NULL,
confidence_interval = 0.95,
by = 101,
reparameterisation = FALSE,
zero_order = FALSE
)
Arguments
data |
Dataframe containing accelerated stability data (required). |
y |
Name of decreasing variable (e.g. concentration) contained within data (required). |
.time |
Time variable contained within data (required). |
K |
Kelvin variable (numeric or column name) (optional). |
C |
Celsius variable (numeric or column name) (optional). |
validation |
Validation dummy variable (column name) (optional). |
draw |
Number of simulations used to estimate confidence intervals. |
parms |
Starting values for the parameters as a list - k1, k2, k3, and c0. |
temp_pred_C |
Integer or numeric value to predict the response for a given temperature (in Celsius). |
max_time_pred |
Maximum time to predict the response variable. |
confidence_interval |
Confidence level for the confidence and prediction intervals around the predictions (default 0.95). |
by |
Number of points (on the time scale) to smooth the statistical intervals around the predictions. |
reparameterisation |
Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2. |
zero_order |
Set kinetic order, k3, to zero (straight lines). |
Details
Fit the one-step Šesták–Berggren kinetic (non-linear) model using accelerated stability data.
Value
An SB class object, a list including the following elements:
-
fit - The non-linear fit.
-
data - The data set.
-
prediction - A data frame containing the predictions with the confidence and prediction intervals.
-
user_parameters - List of users input parameters which is utilised by other functions in the package.
Examples
#load antigenicity and potency data.
data(antigenicity)
data(potency)
#Basic use of the step1.down function with C column defined.
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius", draw = 5000)
#Basic use of the step1.down function with K column defined.
fit2 <- step1_down(data = antigenicity, y = "conc", .time = "time", K = "K", draw = 5000)
#When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
fit3 <- step1_down(data = potency, y = "Potency", .time = "Time",C = "Celsius",
reparameterisation = FALSE, zero_order = TRUE, draw = 5000)
#reparameterisation is TRUE.
fit4 <- step1_down(data = antigenicity, y = "conc", .time = "time",C = "Celsius",
reparameterisation = TRUE, draw = 5000)