| sensitivity {AUC} | R Documentation | 
Compute the sensitivity curve.
Description
This function computes the sensitivity curve required for the auc function and the plot function.
Usage
sensitivity(predictions, labels, perc.rank = TRUE)
Arguments
| predictions | A numeric vector of classification probabilities (confidences, scores) of the positive event. | 
| labels | A factor of observed class labels (responses) with the only allowed values {0,1}. | 
| perc.rank | A logical. If TRUE (default) the percentile rank of the predictions is used. | 
Value
A list containing the following elements:
| cutoffs | A numeric vector of threshold values | 
| measure | A numeric vector of sensitivity values corresponding to the threshold values | 
Author(s)
Authors: Michel Ballings and Dirk Van den Poel, Maintainer: Michel.Ballings@UGent.be
References
Ballings, M., Van den Poel, D., Threshold Independent Performance Measures for Probabilistic Classifcation Algorithms, Forthcoming.
See Also
sensitivity, specificity, accuracy, roc, auc, plot
Examples
data(churn)
sensitivity(churn$predictions,churn$labels)