ATA.Forecast {ATAforecasting} | R Documentation |
Forecasting Method for The ATAforecasting
Description
ATA.Forecast
is a generic function for forecasting of the ATA Method.
Usage
ATA.Forecast(
object,
h = NULL,
out.sample = NULL,
ci.level = 95,
negative.forecast = TRUE,
onestep = FALSE,
print.out = TRUE
)
Arguments
object |
An |
h |
Number of periods for forecasting. |
out.sample |
A numeric vector or time series of class |
ci.level |
Confidence Interval levels for forecasting. Default value is 95. |
negative.forecast |
Negative values are allowed for forecasting. Default value is TRUE. If FALSE, all negative values for forecasting are set to 0. |
onestep |
Default is FALSE. if TRUE, the dynamic forecast strategy uses a one-step model multiple times ( |
print.out |
Default is TRUE. If FALSE, forecast summary of ATA Method is not shown. |
Value
An object of class ata
and forecast values.
Author(s)
Ali Sabri Taylan and Hanife Taylan Selamlar
References
#'Yapar G, Yavuz I, Selamlar HT (2017). “Why and How Does Exponential Smoothing Fail? An In Depth Comparison of ATA-Simple and Simple Exponential Smoothing.” Turkish Journal of Forecasting, 1(1), 30–39.
#'Yapar G, Capar S, Selamlar HT, Yavuz I (2018). “Modified Holt's Linear Trend Method.” Hacettepe University Journal of Mathematics and Statistics, 47(5), 1394–1403.
#'Yapar G (2018). “Modified simple exponential smoothing.” Hacettepe University Journal of Mathematics and Statistics, 47(3), 741–754.
#'Yapar G, Selamlar HT, Capar S, Yavuz I (2019). “ATA method.” Hacettepe Journal of Mathematics and Statistics, 48(6), 1838-1844.
See Also
forecast
, stlplus
, stR
, stl
, decompose
,
tbats
, seasadj
.
Examples
trainATA <- head(touristTR, 84)
ata_fit <- ATA(trainATA, parPHI = 1, seasonal.test = TRUE, seasonal.model = "decomp")
ata_fc <- ATA.Forecast(ata_fit, h=12)