asv_pf {ASV} | R Documentation |
Particle filter for stochastic volatility models with leverage
Description
The function computes the log likelihood given (mu, phi, sigma_eta, rho) for stochastic volatility models with leverage (asymmetric stochastic volatility models).
Usage
asv_pf(mu, phi, sigma_eta, rho, Y, I)
Arguments
mu |
parameter value such as the posterior mean of mu |
phi |
parameter value such as the posterior mean of phi |
sigma_eta |
parameter value such as the posterior mean of sigma_eta |
rho |
parameter value such as the posterior mean of rho |
Y |
T x 1 vector (y(1),...,y(T))' of returns where T is a sample size. |
I |
Number of particles to approximate the filtering density. |
Value
Logarithm of the likelihood of Y given parameters (mu, phi, sigma_eta, rho)
Author(s)
Yasuhiro Omori, Ryuji Hashimoto
References
Omori, Y., Chib, S., Shephard, N., and J. Nakajima (2007), "Stochastic volatility model with leverage: fast and efficient likelihood inference," Journal of Econometrics, 140-2, 425-449.
Takahashi, M., Omori, Y. and T. Watanabe (2022+), Stochastic volatility and realized stochastic volatility models. JSS Research Series in Statistics, in press. Springer, Singapore.
Examples
set.seed(111)
nobs = 80; # n is often larger than 1000 in practice.
mu = 0; phi = 0.97; sigma_eta = 0.3; rho = -0.3;
h = 0; Y = c();
for(i in 1:nobs){
eps = rnorm(1, 0, 1)
eta = rho*sigma_eta*eps + sigma_eta*sqrt(1-rho^2)*rnorm(1, 0, 1)
y = eps * exp(0.5*h)
h = mu + phi * (h-mu) + eta
Y = append(Y, y)
}
npart = 5000
asv_pf(mu, phi, sigma_eta, rho, Y, npart)