DEFUSE3Design {ASSISTant} | R Documentation |
The DEFUSE3 design
Description
DEFUSE3Design
is a slight variant of the the adaptive
clinical trial design of Lai, Lavori and Liao. Simulation is used to compute
the expected maximum sample size and the boundary for early futility is adjusted to
account as well.
Super class
ASSISTant::ASSISTDesign
-> DEFUSE3Design
Methods
Public methods
Inherited methods
ASSISTant::ASSISTDesign$analyze()
ASSISTant::ASSISTDesign$computeCriticalValues()
ASSISTant::ASSISTDesign$getBoundaries()
ASSISTant::ASSISTDesign$getDesignParameters()
ASSISTant::ASSISTDesign$getTrialParameters()
ASSISTant::ASSISTDesign$print()
ASSISTant::ASSISTDesign$setBoundaries()
ASSISTant::ASSISTDesign$summary()
Method getOriginalBoundaries()
Return the original boundaries for the design
Usage
DEFUSE3Design$getOriginalBoundaries()
Returns
a named vector of values for b
, btilde
and c
Method new()
Create a DEFUSE3Design
object
Usage
DEFUSE3Design$new( designParameters, trialParameters, discreteData = FALSE, numberOfSimulations = 5000, rngSeed = 54321, showProgress = TRUE, trueParameters = NULL, boundaries )
Arguments
designParameters
parameters of the experimental design. Must contain apropriate distributions to sample from, if
discreteData = TRUE
trialParameters
the trial parameters, such as sample size etc.
discreteData
a flag indicating that a discrete distribution is to be used for the Rankin scores
numberOfSimulations
the number of simulations to use, default 5000
rngSeed
the random number generator seed
showProgress
a boolean flag to show progress (default
TRUE
)trueParameters
a list of true parameter values reflecting the state of nature
boundaries
decision boundaries to use for interim looks, a named vector of
btilde
,b
andc
values
Returns
a new AssistDesign
object
Method adjustCriticalValues()
Adjust critical values to account for sample size loss due to futility
Usage
DEFUSE3Design$adjustCriticalValues(numberOfSimulations, rngSeed, showProgress)
Arguments
numberOfSimulations
the number of simulations to use
rngSeed
the random number generator seed
showProgress
a boolean flag for showing progress
Returns
the adjusted boundaries
Method explore()
Explore the design using the specified number of simulations and random number seed and other parameters.
Usage
DEFUSE3Design$explore( numberOfSimulations = 5000, rngSeed = 12345, trueParameters = self$getDesignParameters(), recordStats = TRUE, showProgress = TRUE, saveRawData = FALSE )
Arguments
numberOfSimulations
default number of simulations is 5000
rngSeed
default seed is 12345
trueParameters
the state of nature, by default the value of
self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.recordStats
a boolean flag (default
TRUE
) to record statisticsshowProgress
a boolean flag to show progress, default
TRUE
saveRawData
a flag (default
FALSE
) to indicate if raw data has to be saved
Returns
a list of results
Method performInterimLook()
Perform an interim look for futility
Usage
DEFUSE3Design$performInterimLook(trialData, stage, recordStats = FALSE)
Arguments
trialData
trial data frame
stage
the trial stage
recordStats
a boolean flag to record all statistics
Returns
the trial history
Method clone()
The objects of this class are cloneable with this method.
Usage
DEFUSE3Design$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
ASSISTDesign
which is a superclass of this object
Examples
trialParameters <- list(N = c(200, 340, 476), type1Error = 0.025,
eps = 1/2, type2Error = 0.1)
designParameters <- list(
nul0 = list(prevalence = rep(1/6, 6), mean = matrix(0, 2, 6),
sd = matrix(1, 2, 6)),
alt1 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6),
c(0.5, 0.4, 0.3, 0, 0, 0)),
sd = matrix(1, 2, 6)),
alt2 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6),
c(0.5, 0.5, 0, 0, 0, 0)),
sd = matrix(1,2, 6)),
alt3 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6), rep(0.36, 6)),
sd = matrix(1,2, 6)),
alt4 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6), rep(0.30, 6)),
sd = matrix(1,2, 6)),
alt5 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6),
c(0.4, 0.3, 0.2, 0, 0, 0)),
sd = matrix(1,2, 6)),
alt6 = list(prevalence = rep(1/6, 6), mean = rbind(rep(0, 6),
c(0.5, 0.5, 0.3, 0.3, 0.1, 0.1)),
sd = matrix(1,2, 6)))
## Not run:
## A realistic design uses 5000 simulations or more!
defuse3 <- DEFUSE3Design$new(trialParameters = trialParameters,
numberOfSimulations = 25,
designParameters = designParameters$nul0,
showProgress = FALSE)
print(defuse3)
result <- defuse3$explore(showProgress = interactive())
analysis <- defuse3$analyze(result)
print(defuse3$summary(analysis))
## End(Not run)
## For full examples, try:
## browseURL(system.file("full_doc/defuse3.html", package="ASSISTant"))