plot.DiagARpCRM {ARCensReg} | R Documentation |
Plot influence diagnostic measures
Description
Plot method for objects of class "DiagARpCRM".
Usage
## S3 method for class 'DiagARpCRM'
plot(x, ...)
Arguments
x |
An object inheriting from class |
... |
Additional arguments. |
Value
A ggplot object, plotting the index versus the influence diagnostic measure.
Author(s)
Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos
See Also
Examples
library(ggplot2)
# Generating the data
set.seed(12341)
x = cbind(1,runif(100))
dat = rARCens(n=100, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05)
# Creating an outlier
dat$data$y[40] = 5
ggplot(dat$data) + geom_line(aes(x=1:100, y=y)) + theme_bw() +
labs(x="Time")
# Fitting the model
fit = ARCensReg(dat$data$cc, dat$data$lcl, dat$data$ucl, dat$data$y, x,
p=2, tol=0.001, show_se=FALSE)
# Influence diagnostic
M0y = InfDiag(fit, k=3.5, perturbation="y")
plot(M0y)
M0Sigma = InfDiag(fit, k=3.5, perturbation="Sigma")
plot(M0Sigma)
M0x = InfDiag(fit, k=3.5, indcolx=c(0,1), perturbation="x")
plot(M0x)
# Perturbation on a subset of parameters
M0y1 = InfDiag(fit, k=3.5, indpar=c(1,1,0,0,0), perturbation="y")$M0
M0y2 = InfDiag(fit, k=3.5, indpar=c(0,0,1,1,1), perturbation="y")$M0
#
ggplot(data.frame(M0y1,M0y2)) + geom_point(aes(x=M0y1, y=M0y2)) +
geom_hline(yintercept=mean(M0y2)+3.5*sd(M0y2), linetype="dashed") +
geom_vline(xintercept=mean(M0y1)+3.5*sd(M0y1), linetype="dashed") +
theme_bw()
[Package ARCensReg version 3.0.1 Index]