| InfDiag {ARCensReg} | R Documentation |
Influence diagnostic in censored linear regression model with autoregressive errors
Description
It performs influence diagnostic by a local influence approach (Cook 1986) with three possible perturbation schemes: response perturbation (y), scale matrix perturbation (Sigma), or explanatory variable perturbation (x). A benchmark value is calculated that depends on k.
Usage
InfDiag(object, k = 3, indpar = rep(1, length(object$theta)),
indcolx = rep(1, ncol(object$x)), perturbation = "y")
Arguments
object |
Object of class |
k |
Constant to be used in the benchmark calculation: |
indpar |
Vector of length equal to the number of parameters, with each element 0 or 1 indicating if the respective parameter should be considered in the influence calculation. |
indcolx |
If |
perturbation |
Perturbation scheme. Possible values: "y" for response perturbation, "Sigma" for scale matrix perturbation, or "x" for explanatory variable perturbation. |
Details
The function returns a vector of length n with the aggregated contribution (M0) of all eigenvectors
of the matrix associated with the normal curvature. For details see Schumacher et al. (2018).
Value
An object of class "DiagARpCRM" with the following components is returned:
M0 |
Vector of length |
perturbation |
Perturbation scheme. |
benchmark |
|
Author(s)
Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos
References
Cook RD (1986). “Assessment of local influence.” Journal of the Royal Statistical Society: Series B (Methodological), 48(2), 133–155.
Schumacher FL, Lachos VH, Vilca-Labra FE, Castro LM (2018). “Influence diagnostics for censored regression models with autoregressive errors.” Australian & New Zealand Journal of Statistics, 60(2), 209–229.
Zhu H, Lee S (2001). “Local influence for incomplete data models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1), 111–126.
See Also
Examples
library(ggplot2)
# Generating the data
set.seed(12341)
x = cbind(1,runif(100))
dat = rARCens(n=100, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05)
# Creating an outlier
dat$data$y[40] = 5
ggplot(dat$data) + geom_line(aes(x=1:100, y=y)) + theme_bw() +
labs(x="Time")
# Fitting the model
fit = ARCensReg(dat$data$cc, dat$data$lcl, dat$data$ucl, dat$data$y, x,
p=2, tol=0.001, show_se=FALSE)
# Influence diagnostic
M0y = InfDiag(fit, k=3.5, perturbation="y")
plot(M0y)
M0Sigma = InfDiag(fit, k=3.5, perturbation="Sigma")
plot(M0Sigma)
M0x = InfDiag(fit, k=3.5, indcolx=c(0,1), perturbation="x")
plot(M0x)
# Perturbation on a subset of parameters
M0y1 = InfDiag(fit, k=3.5, indpar=c(1,1,0,0,0), perturbation="y")$M0
M0y2 = InfDiag(fit, k=3.5, indpar=c(0,0,1,1,1), perturbation="y")$M0
#
ggplot(data.frame(M0y1,M0y2)) + geom_point(aes(x=M0y1, y=M0y2)) +
geom_hline(yintercept=mean(M0y2)+3.5*sd(M0y2), linetype="dashed") +
geom_vline(xintercept=mean(M0y1)+3.5*sd(M0y1), linetype="dashed") +
theme_bw()