InfDiag {ARCensReg} | R Documentation |
Influence diagnostic in censored linear regression model with autoregressive errors
Description
It performs influence diagnostic by a local influence approach (Cook 1986) with three possible perturbation schemes: response perturbation (y), scale matrix perturbation (Sigma), or explanatory variable perturbation (x). A benchmark value is calculated that depends on k.
Usage
InfDiag(object, k = 3, indpar = rep(1, length(object$theta)),
indcolx = rep(1, ncol(object$x)), perturbation = "y")
Arguments
object |
Object of class |
k |
Constant to be used in the benchmark calculation: |
indpar |
Vector of length equal to the number of parameters, with each element 0 or 1 indicating if the respective parameter should be considered in the influence calculation. |
indcolx |
If |
perturbation |
Perturbation scheme. Possible values: "y" for response perturbation, "Sigma" for scale matrix perturbation, or "x" for explanatory variable perturbation. |
Details
The function returns a vector of length n
with the aggregated contribution (M0
) of all eigenvectors
of the matrix associated with the normal curvature. For details see Schumacher et al. (2018).
Value
An object of class "DiagARpCRM" with the following components is returned:
M0 |
Vector of length |
perturbation |
Perturbation scheme. |
benchmark |
|
Author(s)
Fernanda L. Schumacher, Katherine L. Valeriano, Victor H. Lachos, Christian E. Galarza, and Larissa A. Matos
References
Cook RD (1986). “Assessment of local influence.” Journal of the Royal Statistical Society: Series B (Methodological), 48(2), 133–155.
Schumacher FL, Lachos VH, Vilca-Labra FE, Castro LM (2018). “Influence diagnostics for censored regression models with autoregressive errors.” Australian & New Zealand Journal of Statistics, 60(2), 209–229.
Zhu H, Lee S (2001). “Local influence for incomplete data models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1), 111–126.
See Also
Examples
library(ggplot2)
# Generating the data
set.seed(12341)
x = cbind(1,runif(100))
dat = rARCens(n=100, beta=c(1,-1), phi=c(.48,-.2), sig2=.5, x=x,
cens='left', pcens=.05)
# Creating an outlier
dat$data$y[40] = 5
ggplot(dat$data) + geom_line(aes(x=1:100, y=y)) + theme_bw() +
labs(x="Time")
# Fitting the model
fit = ARCensReg(dat$data$cc, dat$data$lcl, dat$data$ucl, dat$data$y, x,
p=2, tol=0.001, show_se=FALSE)
# Influence diagnostic
M0y = InfDiag(fit, k=3.5, perturbation="y")
plot(M0y)
M0Sigma = InfDiag(fit, k=3.5, perturbation="Sigma")
plot(M0Sigma)
M0x = InfDiag(fit, k=3.5, indcolx=c(0,1), perturbation="x")
plot(M0x)
# Perturbation on a subset of parameters
M0y1 = InfDiag(fit, k=3.5, indpar=c(1,1,0,0,0), perturbation="y")$M0
M0y2 = InfDiag(fit, k=3.5, indpar=c(0,0,1,1,1), perturbation="y")$M0
#
ggplot(data.frame(M0y1,M0y2)) + geom_point(aes(x=M0y1, y=M0y2)) +
geom_hline(yintercept=mean(M0y2)+3.5*sd(M0y2), linetype="dashed") +
geom_vline(xintercept=mean(M0y1)+3.5*sd(M0y1), linetype="dashed") +
theme_bw()