diag.qr {ALDqr} | R Documentation |
Diagnostics for Quantile Regression Using Asymmetric Laplace Distribution
Description
Return case-deletion estimating the parameters in a quantile regression
Usage
diag.qr(y,x,tau,theta)
Arguments
y |
vector of responses |
x |
the design matrix |
tau |
the quantile to be estimated, this is generally a number strictly between 0 and 1. |
theta |
parameter estimated |
Value
Hessian and gradient matrix. Also the generalized cook distance (GDi), approximation of the likelihood distance (QDi)
Author(s)
Luis Benites Sanchez lbenitesanchez@gmail.com, Christian E. Galarza cgalarza88@gmail.com, Victor Hugo Lachos hlachos@ime.unicamp.br
References
[1] Koenker, R. W. (2005). Quantile Regression, Cambridge U. Press. [2] Yu, K. & Moyeed, R. (2001). Bayesian quantile regression. Statistics & Probability Letters, 54 (4), 437 to 447. [3] Kotz, S., Kozubowski, T. & Podgorski, K. (2001). The laplace distribution and generalizations: A revisit with applications to communications, economics, engineering, and finance. Number 183. Birkhauser.
Examples
## Not run:
##############################################################
### Graphic of the generalized Cook distance for data(AIS) ###
##############################################################
#Dados
data(ais, package="sn")
attach(ais)
sexInd <- (sex=="female") + 0
x <- cbind(1,LBM,sexInd)
y <- BMI
#Percentile
perc <- 0.5
res <- EM.qr(y,x,perc)
diag <- diag.qr(y,x,perc,res$theta)
HessianMatrix <- diag$MatrizQ
Gradiente <- diag$mdelta
GDI <- c()
for (i in 1:202) {
GDI[i] <- t(Gradiente[,i])
}
#Seccion de los graficos
par(mfrow = c(1,1))
plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.1')
abline(h=2*(4+1)/202,lty=2)
identify(GDI,n=1)
plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.5')
abline(h=2*(4+1)/202,lty=2)
identify(GDI,n=1)
plot(seq(1:202),GDI,xlab='Index',ylab=expression(paste(GD[i])),main='p=0.9')
abline(h=2*(4+1)/202,lty=2)
identify(GDI,n=4)
#############################################################
### Graphic of the likelihood displacemente for data(AIS) ###
#############################################################
#Dados
data(ais, package="sn"); attach(ais); sexInd<-(sex=="female")+0; x=cbind(1,LBM,sexInd); y=BMI
#Percentile
perc <- 0.9
n <- nrow(x)
res <- EM.qr(y,x,perc)
thetaest <- res$theta
sigmaest <- thetaest[4]
betaest <- matrix(thetaest[1:3],3,1)
taup2 <- (2/(perc*(1-perc)))
thep <- (1-2*peGraphic of the generalized Cook distance for data(AIS)rc)/(perc*(1-perc))
diag <- diag.qr(y,x,perc,thetaest)
HessianMatrix <- diag$MatrizQ
Gradiente <- diag$mdelta
sigma <- sigmaest
beta <- betaest
muc <- (y-x
delta2 <- (y-x
gamma2 <- (2+thep^2/taup2)/sigma
vchpN <- besselK(sqrt(delta2*gamma2), 0.5-1)
/(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))^(-1)
vchp1 <- besselK(sqrt(delta2*gamma2), 0.5+1)
/(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))
Q <- -0.5*n*log(sigmaest)-0.5*(sigmaest*taup2)^{-1}*
(sum(vchpN*muc^2 - 2*muc*thep + vchp1*(thep^2+2*taup2)))
########################################################
theta_i <- thetaest
sigmaest <- theta_i[4,]
betaest <- theta_i[1:3,]
sigma <- sigmaest
beta <- betaest
muc <- (y-x
delta2 <- (y-x
gamma2 <- (2+thep^2/taup2)/sigma
vchpN <- besselK(sqrt(delta2*gamma2), 0.5-1)
/(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))^(-1)
vchp1 <- besselK(sqrt(delta2*gamma2), 0.5+1)
/(besselK(sqrt(delta2*gamma2), 0.5))*(sqrt(delta2/gamma2))
Q1 <- c()
for (i in 1:202)
{
Q1[i] <- -0.5*n*log(sigmaest[i])-sum(vchpN[,i]*muc[,i]^2 - 2*muc[,i]*thep
+ vchp1[,i]*(thep^2+2*taup2))/(2*(sigmaest[i]*taup2))
}
########################################################
QDi <- 2*(-Q+Q1)
#Depois de escolger perc guardamos os valores de QDi
QDi0.1 <- QDi
QDi0.5 <- QDi
QDi0.9 <- QDi
#Seccion de los graficos
par(mfrow = c(1,1))
plot(seq(1:202),QDi0.1,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.1')
abline(h=mean(QDi0.1)+3.5*sd(QDi0.1),lty=2)
identify(QDi0.1,n=3)
plot(seq(1:202),QDi0.5,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.5')
abline(h=mean(QDi0.5)+3.5*sd(QDi0.5),lty=2)
identify(QDi0.5,n=3)
plot(seq(1:202),QDi0.9,xlab='Index',ylab=expression(paste(QD[i])),main='p=0.9')
abline(h=mean(QDi0.9)+3.5*sd(QDi0.9),lty=2)
identify(QDi0.9,n=4)
## End(Not run)