simulation {AIUQ} | R Documentation |
Simulate 2D particle movement
Description
Simulate 2D particle movement from a user selected stochastic process, and output intensity profiles.
Usage
simulation(
sz = c(200, 200),
len_t = 200,
M = 50,
model_name = "BM",
noise = "gaussian",
I0 = 20,
Imax = 255,
pos0 = matrix(NaN, nrow = M, ncol = 2),
rho = 0.95,
H = 0.3,
sigma_p = 2,
sigma_bm = 1,
sigma_ou = 2,
sigma_fbm = 2
)
Arguments
sz |
frame size of simulated image with default |
len_t |
number of time steps with default 200. |
M |
number of particles with default 50. |
model_name |
stochastic process simulated, options from ('BM','OU','FBM','OU+FBM'), with default 'BM'. |
noise |
background noise, options from ('uniform','gaussian'), with default 'gaussian'. |
I0 |
background intensity, value between 0 and 255, with default 20. |
Imax |
maximum intensity at the center of the particle, value between 0 and 255, with default 255. |
pos0 |
initial position for M particles, matrix with dimension M by 2. |
rho |
correlation between successive step and previous step in O-U process, value between 0 and 1, with default 0.95. |
H |
Hurst parameter of fractional Brownian Motion, value between 0 and 1, with default 0.3. |
sigma_p |
radius of the spherical particle (3sigma_p), with default 2. |
sigma_bm |
distance moved per time step in Brownian Motion, with default 1. |
sigma_ou |
distance moved per time step in Ornstein–Uhlenbeck process, with default 2. |
sigma_fbm |
distance moved per time step in fractional Brownian Motion, with default 2. |
Value
Returns an S4 object of class simulation
.
Author(s)
Yue He [aut], Xubo Liu [aut], Mengyang Gu [aut, cre]
References
Gu, M., He, Y., Liu, X., & Luo, Y. (2023). Ab initio uncertainty quantification in scattering analysis of microscopy. arXiv preprint arXiv:2309.02468.
Gu, M., Luo, Y., He, Y., Helgeson, M. E., & Valentine, M. T. (2021). Uncertainty quantification and estimation in differential dynamic microscopy. Physical Review E, 104(3), 034610.
Cerbino, R., & Trappe, V. (2008). Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Physical review letters, 100(18), 188102.
Examples
library(AIUQ)
# -------------------------------------------------
# Example 1: Simple diffusion for 200 images with
# 200 by 200 pixels and 50 particles
# -------------------------------------------------
sim_bm = simulation()
show(sim_bm)
# -------------------------------------------------
# Example 2: Simple diffusion for 100 images with
# 100 by 100 pixels and slower speed
# -------------------------------------------------
sim_bm = simulation(sz=100,len_t=100,sigma_bm=0.5)
show(sim_bm)
# -------------------------------------------------
# Example 3: Ornstein-Uhlenbeck process
# -------------------------------------------------
sim_ou = simulation(model_name="OU")
show(sim_ou)