| AIPW_tmle {AIPW} | R Documentation | 
Augmented Inverse Probability Weighting (AIPW) uses tmle or tmle3 as inputs
Description
AIPW_tmle class uses a fitted tmle or tmle3 object as input
Details
Create an AIPW_tmle object that uses the estimated efficient influence function from a fitted tmle or tmle3 object
Value
AIPW_tmle object
Constructor
AIPW$new(Y = NULL, A = NULL, tmle_fit = NULL, verbose = TRUE)
Constructor Arguments
| Argument | Type | Details | 
| Y | Integer | A vector of outcome (binary (0, 1) or continuous) | 
| A | Integer | A vector of binary exposure (0 or 1) | 
| tmle_fit | Object | A fitted tmleortmle3object | 
| verbose | Logical | Whether to print the result (Default = TRUE) | 
Public Methods
| Methods | Details | Link | 
| summary() | Summary of the average treatment effects from AIPW | summary.AIPW_base | 
| plot.p_score() | Plot the propensity scores by exposure status | plot.p_score | 
| plot.ip_weights() | Plot the inverse probability weights using truncated propensity scores | plot.ip_weights | 
Public Variables
| Variable | Generated by | Return | 
| n | Constructor | Number of observations | 
| obs_est | Constructor | Components calculating average causal effects | 
| estimates | summary() | A list of Risk difference, risk ratio, odds ratio | 
| result | summary() | A matrix contains RD, ATT, ATC, RR and OR with their SE and 95%CI | 
| g.plot | plot.p_score() | A density plot of propensity scores by exposure status | 
| ip_weights.plot | plot.ip_weights() | A box plot of inverse probability weights | 
Public Variable Details
- obs_est
- This list extracts from the fitted - tmleobject. It includes propensity scores (- p_score), counterfactual predictions (- mu,- mu1&- mu0) and efficient influence functions (- aipw_eif1&- aipw_eif0)
- g.plot
- This plot is generated by - ggplot2::geom_density
- ip_weights.plot
- This plot uses truncated propensity scores stratified by exposure status ( - ggplot2::geom_boxplot)
Examples
vec <- function() sample(0:1,100,replace = TRUE)
df <- data.frame(replicate(4,vec()))
names(df) <- c("A","Y","W1","W2")
## From tmle
library(tmle)
library(SuperLearner)
tmle_fit <- tmle(Y=df$Y,A=df$A,W=subset(df,select=c("W1","W2")),
                 Q.SL.library="SL.glm",
                 g.SL.library="SL.glm",
                 family="binomial")
AIPW_tmle$new(A=df$A,Y=df$Y,tmle_fit = tmle_fit,verbose = TRUE)$summary()
[Package AIPW version 0.6.3.2 Index]