| AEHMLE {AHSurv} | R Documentation | 
Relative Survival AH model.
Description
The flexible parametric accelerated excess hazards (AEH) model's maximum likelihood estimation, log-likelihood, and information criterion. Baseline hazards:NGLL, GLL, KW,EW, MLL, PGW, GG, MKW, Log-logistic, Weibull, Log-normal, Burr-XII, and Gamma
Usage
AEHMLE(
  init,
  time,
  delta,
  n,
  basehaz,
  z,
  hp.obs,
  method = "Nelder-Mead",
  maxit = 1000,
  log = FALSE
)
Arguments
init | 
 : initial points for optimisation  | 
time | 
 : survival times  | 
delta | 
 : vital indicator (0-alive,1 - dead)  | 
n | 
 : The number of the observations of the data set  | 
basehaz | 
 : baseline hazard structure including baseline (NGLLAEH,GLLAEH,EWAEH,KWAEH,MLLAEH, PGWAEH,GGAEH,MKWAEH,LLAEH,WAEH,GAEH, LNAEH,BXIIAEEH)  | 
z | 
 : design matrix for covariates (p x n), p >= 1  | 
hp.obs | 
 : population hazards (for uncensored individuals)  | 
method | 
 :"nlminb" or a method from "optim"  | 
maxit | 
 :The maximum number of iterations. Defaults to 1000  | 
log | 
 :log scale (TRUE or FALSE)  | 
Format
By default the function calculates the following values:
AIC: Akaike Information Criterion;
CAIC: Consistent Akaikes Information Criterion;
BIC: Bayesian Information Criterion;
BCAIC: Bozdogan’s Consistent Akaike Information Criterion;
HQIC: Hannan-Quinn information criterion;
par: maximum likelihood estimates;
Value: value of the likelihood function;
Convergence: 0 indicates successful completion and 1 indicates that the iteration limit maxit.
Value
a list containing the output of the optimisation (OPT) and the information criterion including (AIC, BIC, CAIC, BCAIC, and HQIC).
Author(s)
Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Mutua Kilai, abdisalam.hassan@amoud.edu.so
Examples
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
AEHMLE(init = c(1.0,0.5,1.0,0.5),time = time,delta = delta,n=nrow(z),
basehaz = "GLLAEH",z = z,hp.obs=0.6,method = "Nelder-Mead",
maxit = 1000)