AEHMLE {AHSurv} | R Documentation |
Relative Survival AH model.
Description
The flexible parametric accelerated excess hazards (AEH) model's maximum likelihood estimation, log-likelihood, and information criterion. Baseline hazards:NGLL, GLL, KW,EW, MLL, PGW, GG, MKW, Log-logistic, Weibull, Log-normal, Burr-XII, and Gamma
Usage
AEHMLE(
init,
time,
delta,
n,
basehaz,
z,
hp.obs,
method = "Nelder-Mead",
maxit = 1000,
log = FALSE
)
Arguments
init |
: initial points for optimisation |
time |
: survival times |
delta |
: vital indicator (0-alive,1 - dead) |
n |
: The number of the observations of the data set |
basehaz |
: baseline hazard structure including baseline (NGLLAEH,GLLAEH,EWAEH,KWAEH,MLLAEH, PGWAEH,GGAEH,MKWAEH,LLAEH,WAEH,GAEH, LNAEH,BXIIAEEH) |
z |
: design matrix for covariates (p x n), p >= 1 |
hp.obs |
: population hazards (for uncensored individuals) |
method |
:"nlminb" or a method from "optim" |
maxit |
:The maximum number of iterations. Defaults to 1000 |
log |
:log scale (TRUE or FALSE) |
Format
By default the function calculates the following values:
AIC: Akaike Information Criterion;
CAIC: Consistent Akaikes Information Criterion;
BIC: Bayesian Information Criterion;
BCAIC: Bozdogan’s Consistent Akaike Information Criterion;
HQIC: Hannan-Quinn information criterion;
par: maximum likelihood estimates;
Value: value of the likelihood function;
Convergence: 0 indicates successful completion and 1 indicates that the iteration limit maxit.
Value
a list containing the output of the optimisation (OPT) and the information criterion including (AIC, BIC, CAIC, BCAIC, and HQIC).
Author(s)
Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Mutua Kilai, abdisalam.hassan@amoud.edu.so
Examples
data(bmt)
time<-bmt$Time
delta<-bmt$Status
z<-bmt$TRT
AEHMLE(init = c(1.0,0.5,1.0,0.5),time = time,delta = delta,n=nrow(z),
basehaz = "GLLAEH",z = z,hp.obs=0.6,method = "Nelder-Mead",
maxit = 1000)