inla.st {AGPRIS} | R Documentation |
Space-time bayesian INLA estimator
Description
This function estimates a space time linear model using the bayesian INLA. It is a wrapper of the INLA::inla function (Lindgren and Rue (2015) doi:10.18637/jss.v063.i19; Bivand, Gomez-Rubio and Rue (2015) doi:10.18637/jss.v063.i20) adapted to panel data.
Usage
inla.st(
formula,
d,
W,
RHO,
PHI,
var.agg,
normalization = FALSE,
improve = TRUE,
fhyper = NULL,
probit = FALSE,
...
)
Arguments
formula |
Formula of the model to be estimated |
d |
Data frame |
W |
Spatial matrix |
RHO |
Parameter of spatial dependence |
PHI |
Parameter of temporal dependence |
var.agg |
Indexes of the panel dimensions. The first argument is the spatial dimension, the second argument is the temporal dimension. |
normalization |
Boolean. If TRUE the data are normalized before estimation |
improve |
Please refer to the documentation of the INLA package |
fhyper |
Plase refer to the documentation of the INLA package |
probit |
Plase refer to the documentation of the INLA package |
... |
additional parameters. Please, refer to the documentation of the INLA package |
Value
Returns a model of class "inla". Please, refer to the documentation of the INLA package for additional information
Examples
library(terra)
set.seed(123)
sd = sim_data_fe(dataset=regsamp,N=100,TT=8,spatial = 80,
Tau = -0.2,Rho = 0.4, Beta = 2,sdDev = 2,
startingT = 10,LONGLAT = TRUE)
est_inla = inla.st(formula = Y~-1+X1,d = sd[[1]]@data,
W = sd[[2]],PHI=-0.2,RHO=0.4,
var.agg=c('Cod_Provincia','Anno'),
family='gaussian',
improve=TRUE,
normalization=FALSE,
control.family = list(hyper = list(prec=list(initial=25,fixed=TRUE))),
control.predictor = list(compute = TRUE),
control.compute = list(dic = TRUE, cpo = TRUE),
control.inla = list(print.joint.hyper = TRUE))
summary(est_inla)