SIC33 {AER} | R Documentation |
SIC33 Production Data
Description
Statewide production data for primary metals industry (SIC 33).
Usage
data("SIC33")
Format
A data frame containing 27 observations on 3 variables.
- output
Value added.
- labor
Labor input.
- capital
Capital stock.
Source
Online complements to Greene (2003). Table F6.1.
https://pages.stern.nyu.edu/~wgreene/Text/tables/tablelist5.htm
References
Greene, W.H. (2003). Econometric Analysis, 5th edition. Upper Saddle River, NJ: Prentice Hall.
See Also
Examples
data("SIC33", package = "AER")
## Example 6.2 in Greene (2003)
## Translog model
fm_tl <- lm(output ~ labor + capital + I(0.5 * labor^2) + I(0.5 * capital^2) + I(labor * capital),
data = log(SIC33))
## Cobb-Douglas model
fm_cb <- lm(output ~ labor + capital, data = log(SIC33))
## Table 6.2 in Greene (2003)
deviance(fm_tl)
deviance(fm_cb)
summary(fm_tl)
summary(fm_cb)
vcov(fm_tl)
vcov(fm_cb)
## Cobb-Douglas vs. Translog model
anova(fm_cb, fm_tl)
## hypothesis of constant returns
linearHypothesis(fm_cb, "labor + capital = 1")
## 3D Visualization
library("scatterplot3d")
s3d <- scatterplot3d(log(SIC33)[,c(2, 3, 1)], pch = 16)
s3d$plane3d(fm_cb, lty.box = "solid", col = 4)
## Interactive 3D Visualization
if(require("rgl")) {
x <- log(SIC33)[,2]
y <- log(SIC33)[,3]
z <- log(SIC33)[,1]
plot3d(x, y, z, type = "s", col = "gray", radius = 0.1)
x <- seq(4.5, 7.5, by = 0.5)
y <- seq(5.5, 10, by = 0.5)
z <- outer(x, y, function(x, y) predict(fm_cb, data.frame(labor = x, capital = y)))
surface3d(x, y, z, color = "blue", alpha = 0.5, shininess = 128)
}
[Package AER version 1.2-12 Index]