Baltagi2002 {AER}R Documentation

Data and Examples from Baltagi (2002)

Description

This manual page collects a list of examples from the book. Some solutions might not be exact and the list is certainly not complete. If you have suggestions for improvement (preferably in the form of code), please contact the package maintainer.

References

Baltagi, B.H. (2002). Econometrics, 3rd ed., Berlin: Springer-Verlag.

See Also

BenderlyZwick, CigarettesB, EuroEnergy, Grunfeld, Mortgage, NaturalGas, OECDGas, OrangeCounty, PSID1982, TradeCredit, USConsump1993, USCrudes, USGasB, USMacroB

Examples


################################
## Cigarette consumption data ##
################################

## data
data("CigarettesB", package = "AER")

## Table 3.3
cig_lm <- lm(packs ~ price, data = CigarettesB)
summary(cig_lm)

## Figure 3.9
plot(residuals(cig_lm) ~ price, data = CigarettesB)
abline(h = 0, lty = 2)

## Figure 3.10
cig_pred <- with(CigarettesB,
  data.frame(price = seq(from = min(price), to = max(price), length = 30)))
cig_pred <- cbind(cig_pred, predict(cig_lm, newdata = cig_pred, interval = "confidence"))
plot(packs ~ price, data = CigarettesB)
lines(fit ~ price, data = cig_pred)
lines(lwr ~ price, data = cig_pred, lty = 2)
lines(upr ~ price, data = cig_pred, lty = 2)

## Chapter 5: diagnostic tests (p. 111-115)
cig_lm2 <- lm(packs ~ price + income, data = CigarettesB)
summary(cig_lm2)
## Glejser tests (p. 112)
ares <- abs(residuals(cig_lm2))
summary(lm(ares ~ income, data = CigarettesB))
summary(lm(ares ~ I(1/income), data = CigarettesB))
summary(lm(ares ~ I(1/sqrt(income)), data = CigarettesB))
summary(lm(ares ~ sqrt(income), data = CigarettesB))
## Goldfeld-Quandt test (p. 112)
gqtest(cig_lm2, order.by = ~ income, data = CigarettesB, fraction = 12, alternative = "less")
## NOTE: Baltagi computes the test statistic as mss1/mss2,
## i.e., tries to find decreasing variances. gqtest() always uses
## mss2/mss1 and has an "alternative" argument.

## Spearman rank correlation test (p. 113)
cor.test(~ ares + income, data = CigarettesB, method = "spearman")
## Breusch-Pagan test (p. 113)
bptest(cig_lm2, varformula = ~ income, data = CigarettesB, student = FALSE)
## White test (Table 5.1, p. 113)
bptest(cig_lm2, ~ income * price + I(income^2) + I(price^2), data = CigarettesB)
## White HC standard errors (Table 5.2, p. 114)
coeftest(cig_lm2, vcov = vcovHC(cig_lm2, type = "HC1"))
## Jarque-Bera test (Figure 5.2, p. 115)
hist(residuals(cig_lm2), breaks = 16, ylim = c(0, 10), col = "lightgray")
library("tseries")
jarque.bera.test(residuals(cig_lm2))

## Tables 8.1 and 8.2
influence.measures(cig_lm2)


#####################################
## US consumption data (1950-1993) ##
#####################################

## data
data("USConsump1993", package = "AER")
plot(USConsump1993, plot.type = "single", col = 1:2)

## Chapter 5 (p. 122-125)
fm <- lm(expenditure ~ income, data = USConsump1993)
summary(fm)
## Durbin-Watson test (p. 122)
dwtest(fm)
## Breusch-Godfrey test (Table 5.4, p. 124)
bgtest(fm)
## Newey-West standard errors (Table 5.5, p. 125)
coeftest(fm, vcov = NeweyWest(fm, lag = 3, prewhite = FALSE, adjust = TRUE)) 

## Chapter 8
library("strucchange")
## Recursive residuals
rr <- recresid(fm)
rr
## Recursive CUSUM test
rcus <- efp(expenditure ~ income, data = USConsump1993)
plot(rcus)
sctest(rcus)
## Harvey-Collier test
harvtest(fm)
## NOTE" Mistake in Baltagi (2002) who computes
## the t-statistic incorrectly as 0.0733 via
mean(rr)/sd(rr)/sqrt(length(rr))
## whereas it should be (as in harvtest)
mean(rr)/sd(rr) * sqrt(length(rr))

## Rainbow test
raintest(fm, center = 23)

## J test for non-nested models
library("dynlm")
fm1 <- dynlm(expenditure ~ income + L(income), data = USConsump1993)
fm2 <- dynlm(expenditure ~ income + L(expenditure), data = USConsump1993)
jtest(fm1, fm2)

## Chapter 11
## Table 11.1 Instrumental-variables regression
usc <- as.data.frame(USConsump1993)
usc$investment <- usc$income - usc$expenditure
fm_ols <- lm(expenditure ~ income, data = usc)
fm_iv <- ivreg(expenditure ~ income | investment, data = usc)
## Hausman test
cf_diff <- coef(fm_iv) - coef(fm_ols)
vc_diff <- vcov(fm_iv) - vcov(fm_ols)
x2_diff <- as.vector(t(cf_diff) %*% solve(vc_diff) %*% cf_diff)
pchisq(x2_diff, df = 2, lower.tail = FALSE)

## Chapter 14
## ACF and PACF for expenditures and first differences
exps <- USConsump1993[, "expenditure"]
(acf(exps))
(pacf(exps))
(acf(diff(exps)))
(pacf(diff(exps)))

## dynamic regressions, eq. (14.8)
fm <- dynlm(d(exps) ~ I(time(exps) - 1949) + L(exps))
summary(fm)


################################
## Grunfeld's investment data ##
################################

## select the first three companies (as panel data)
data("Grunfeld", package = "AER")
pgr <- subset(Grunfeld, firm %in% levels(Grunfeld$firm)[1:3])
library("plm")
pgr <- pdata.frame(pgr, c("firm", "year"))

## Ex. 10.9
library("systemfit")
gr_ols <- systemfit(invest ~ value + capital, method = "OLS", data = pgr)
gr_sur <- systemfit(invest ~ value + capital, method = "SUR", data = pgr)


#########################################
## Panel study on income dynamics 1982 ##
#########################################

## data
data("PSID1982", package = "AER")

## Table 4.1
earn_lm <- lm(log(wage) ~ . + I(experience^2), data = PSID1982)
summary(earn_lm)

## Table 13.1
union_lpm <- lm(I(as.numeric(union) - 1) ~ . - wage, data = PSID1982)
union_probit <- glm(union ~ . - wage, data = PSID1982, family = binomial(link = "probit"))
union_logit <- glm(union ~ . - wage, data = PSID1982, family = binomial)
## probit OK, logit and LPM rather different.

[Package AER version 1.2-12 Index]