regaep {AEP} | R Documentation |
Robust linear regression analysis when error term follows AEP distribution
Description
Estimates parameters of the multiple linear regression model through EM algorithm when error term follows AEP distribution. The regression model is given by
y_{i}=\beta_{0}+\beta_{1} x_{i1}+\cdots+ \beta_{k} x_{ik}+\nu_{i},~ i=1,\cdots,n,
where {\boldsymbol{\beta}}=\bigl(\beta_{0},\beta_{1},\cdots,\beta_{k}\bigr)^{T}
are the
regression coefficients and \nu_i
is the error term follows a zero-location AEP distibution.
Usage
regaep(y, x)
Arguments
y |
Vector of response observations of length |
x |
An |
Value
A list of estimated regression coefficients, summary of residuals, F statistic, R-square (R^2
), adjusted R-square, and inverted observed Fisher information matrix.
Author(s)
Mahdi Teimouri
References
A. P. Dempster, N. M. Laird, and D. B. Rubin, 1977. Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society Series B, 39, 1-38.
Examples
x <- seq(-5, 5, 0.1)
y <- 2 + 2*x + raep( length(x), alpha = 1, sigma = 0.5, mu = 0, epsilon = 0.5)
regaep(y, x)