qaep {AEP}R Documentation

Computing the quantile function of asymmetric exponential power (AEP) distribution.

Description

Computes the quantile function of AEP distribution given by

FX1(uΘ)=μσ(1ϵ)[γ(1ϵ2u1ϵ,1α)Γ(1α)]1α,  u1ϵ2, F_{X}^{-1}(u|\Theta)= \mu-\sigma(1-\epsilon)\biggl[\frac{\gamma\bigl(\frac{1-\epsilon-2u}{1-\epsilon},\frac{1}{\alpha}\bigr)}{\Gamma\bigl(\frac{1}{\alpha}\bigr)}\biggr]^{\frac{1}{\alpha}},~{{}}~u\leq \frac{1-\epsilon}{2},

FX1(uΘ)=μ+σ(1+ϵ)[γ(2u+ϵ11+ϵ,1α)Γ(1α)]1α,  u>1ϵ2. F_{X}^{-1}(u|\Theta)= \mu+\sigma(1+\epsilon)\biggl[\frac{\gamma\bigl(\frac{2u+\epsilon-1}{1+\epsilon},\frac{1}{\alpha}\bigr)}{\Gamma\bigl(\frac{1}{\alpha}\bigr)}\biggr]^{\frac{1}{\alpha}},~{{}}~u> \frac{1-\epsilon}{2}.\\

where <x<+-\infty<x<+\infty, Θ=(α,σ,μ,ϵ)T\Theta=(\alpha,\sigma,\mu,\epsilon)^T with 0<α2,σ>00<\alpha \leq 2, \sigma> 0, <μ<-\infty<\mu<\infty, 1<ϵ<1-1<\epsilon<1, and

γ(u,ν)=0utν1exp{t}dt, ν>0.\gamma(u,\nu) =\int_{0}^{u}t^{\nu-1}\exp\bigl\{-t\bigr\}dt, ~\nu>0.

Usage

qaep(u, alpha, sigma, mu, epsilon)

Arguments

u

Numeric vector with values in (0,1)(0,1) whose quantiles are desired.

alpha

Tail thickness parameter.

sigma

Scale parameter.

mu

Location parameter.

epsilon

Skewness parameter.

Value

A vector of length n, consists of the random generated values from AEP distribution.

Author(s)

Mahdi Teimouri

Examples

qaep(runif(1), alpha = 1.5, sigma = 1, mu = 0, epsilon = 0.5)

[Package AEP version 0.1.4 Index]