qaep {AEP} | R Documentation |
Computing the quantile function of asymmetric exponential power (AEP) distribution.
Description
Computes the quantile function of AEP distribution given by
F_{X}^{-1}(u|\Theta)=
\mu-\sigma(1-\epsilon)\biggl[\frac{\gamma\bigl(\frac{1-\epsilon-2u}{1-\epsilon},\frac{1}{\alpha}\bigr)}{\Gamma\bigl(\frac{1}{\alpha}\bigr)}\biggr]^{\frac{1}{\alpha}},~{{}}~u\leq \frac{1-\epsilon}{2},
F_{X}^{-1}(u|\Theta)=
\mu+\sigma(1+\epsilon)\biggl[\frac{\gamma\bigl(\frac{2u+\epsilon-1}{1+\epsilon},\frac{1}{\alpha}\bigr)}{\Gamma\bigl(\frac{1}{\alpha}\bigr)}\biggr]^{\frac{1}{\alpha}},~{{}}~u> \frac{1-\epsilon}{2}.\\
where
-\infty<x<+\infty
, \Theta=(\alpha,\sigma,\mu,\epsilon)^T
with 0<\alpha \leq 2, \sigma> 0
, -\infty<\mu<\infty
, -1<\epsilon<1
,
and
\gamma(u,\nu) =\int_{0}^{u}t^{\nu-1}\exp\bigl\{-t\bigr\}dt, ~\nu>0.
Usage
qaep(u, alpha, sigma, mu, epsilon)
Arguments
u |
Numeric vector with values in |
alpha |
Tail thickness parameter. |
sigma |
Scale parameter. |
mu |
Location parameter. |
epsilon |
Skewness parameter. |
Value
A vector of length n
, consists of the random generated values from AEP distribution.
Author(s)
Mahdi Teimouri
Examples
qaep(runif(1), alpha = 1.5, sigma = 1, mu = 0, epsilon = 0.5)