daep {AEP} | R Documentation |
Computing the probability density function (pdf) of asymmetric exponential power (AEP) distribution.
Description
The pdf of AEP distribution given by
f_{X}(x|\Theta)=
\frac{1}{2\sigma \Gamma\bigl(1+\frac{1}{\alpha}\bigr)}\exp\biggl\{-\bigg|\frac{\mu-x}{\sigma(1-\epsilon)}\bigg|^{\alpha}\biggr\},~~{}~x < \mu,
f_{X}(x|\Theta)=
\frac{1}{2\sigma \Gamma\bigl(1+\frac{1}{\alpha}\bigr)}\exp\biggl\{-\bigg|\frac{x-\mu}{\sigma(1+\epsilon)}\bigg|^{\alpha}\biggr\},~~{}~x \geq\mu,
where -\infty<x<+\infty
, \Theta=(\alpha,\sigma,\mu,\epsilon)^T
with 0<\alpha \leq 2
, \sigma> 0
, -\infty<\mu<\infty
, -1<\epsilon<1
,
and
\Gamma(u)=\int_{0}^{+\infty} x^{u-1}\exp\bigl\{-x\bigr\}dx,~u>0.
Usage
daep(x, alpha, sigma, mu, epsilon, log = FALSE)
Arguments
x |
Vector of observation of requested random realizations. |
alpha |
Tail thickness parameter. |
sigma |
Scale parameter. |
mu |
Location parameter. |
epsilon |
Skewness parameter. |
log |
If |
Details
The AEP distribution is a special case of asymmetric exponential power distribution studied by Dongming and Zinde-Walsh (2009) when p_1=p_2=\alpha
. Also, note that if \epsilon=0
, then the AEP distribution turns into a normal distribution with mean \mu
and standard deviation \sqrt{2}\sigma
. When \alpha=2
, the AEP distribution is a slight variant of epsilon-skew-normal distribution introduced by Mudholkar and Huston (2001).
Value
Computed pdf of AEP distribution at points of vector x
.
Author(s)
Mahdi Teimouri
References
Z. Dongming and V. Zinde-Walsh, 2009. Properties and estimation of asymmetric exponential power distribution, Journal of Econometrics, 148(1), 86-99.
G. S. Mudholkar and A. D. Huston, 2001. The epsilon-skew-normal distribution for analyzing near-normal data, Journal of Statistical Planning and Inference, 83, 291-309.
Examples
daep(x = 2, alpha = 1.5, sigma = 1, mu = 0, epsilon = 0.5, log = FALSE)