RIDGEsigma {ADMMsigma} | R Documentation |
Ridge penalized precision matrix estimation
Description
Ridge penalized matrix estimation via closed-form solution. If one is only interested in the ridge penalty, this function will be faster and provide a more precise estimate than using ADMMsigma
.
Consider the case where
X_{1}, ..., X_{n}
are iid N_{p}(\mu, \Sigma)
and we are tasked with estimating the precision matrix,
denoted \Omega \equiv \Sigma^{-1}
. This function solves the
following optimization problem:
- Objective:
-
\hat{\Omega}_{\lambda} = \arg\min_{\Omega \in S_{+}^{p}} \left\{ Tr\left(S\Omega\right) - \log \det\left(\Omega \right) + \frac{\lambda}{2}\left\| \Omega \right\|_{F}^{2} \right\}
where \lambda > 0
and \left\|\cdot \right\|_{F}^{2}
is the Frobenius
norm.
Usage
RIDGEsigma(X = NULL, S = NULL, lam = 10^seq(-2, 2, 0.1), path = FALSE,
K = 5, cores = 1, trace = c("none", "progress", "print"))
Arguments
X |
option to provide a nxp data matrix. Each row corresponds to a single observation and each column contains n observations of a single feature/variable. |
S |
option to provide a pxp sample covariance matrix (denominator n). If argument is |
lam |
positive tuning parameters for ridge penalty. If a vector of parameters is provided, they should be in increasing order. Defaults to grid of values |
path |
option to return the regularization path. This option should be used with extreme care if the dimension is large. If set to TRUE, cores will be set to 1 and errors and optimal tuning parameters will based on the full sample. Defaults to FALSE. |
K |
specify the number of folds for cross validation. |
cores |
option to run CV in parallel. Defaults to |
trace |
option to display progress of CV. Choose one of |
Value
returns class object RIDGEsigma
which includes:
Lambda |
optimal tuning parameter. |
Lambdas |
grid of lambda values for CV. |
Omega |
estimated penalized precision matrix. |
Sigma |
estimated covariance matrix from the penalized precision matrix (inverse of Omega). |
Path |
array containing the solution path. Solutions are ordered dense to sparse. |
Gradient |
gradient of optimization function (penalized gaussian likelihood). |
MIN.error |
minimum average cross validation error (cv.crit) for optimal parameters. |
AVG.error |
average cross validation error (cv.crit) across all folds. |
CV.error |
cross validation errors (cv.crit). |
Author(s)
Matt Galloway gall0441@umn.edu
References
Rothman, Adam. 2017. 'STAT 8931 notes on an algorithm to compute the Lasso-penalized Gaussian likelihood precision matrix estimator.'
See Also
Examples
# generate data from a sparse matrix
# first compute covariance matrix
S = matrix(0.7, nrow = 5, ncol = 5)
for (i in 1:5){
for (j in 1:5){
S[i, j] = S[i, j]^abs(i - j)
}
}
# generate 100 x 5 matrix with rows drawn from iid N_p(0, S)
set.seed(123)
Z = matrix(rnorm(100*5), nrow = 100, ncol = 5)
out = eigen(S, symmetric = TRUE)
S.sqrt = out$vectors %*% diag(out$values^0.5)
S.sqrt = S.sqrt %*% t(out$vectors)
X = Z %*% S.sqrt
# ridge penalty no ADMM
RIDGEsigma(X, lam = 10^seq(-5, 5, 0.5))