admm.lasso {ADMM} | R Documentation |
Least Absolute Shrinkage and Selection Operator
Description
LASSO, or L1-regularized regression, is an optimization problem to solve
\textrm{min}_x ~ \frac{1}{2}\|Ax-b\|_2^2 + \lambda \|x\|_1
for sparsifying the coefficient vector x
.
The implementation is borrowed from Stephen Boyd's
MATLAB code.
Usage
admm.lasso(
A,
b,
lambda = 1,
rho = 1,
alpha = 1,
abstol = 1e-04,
reltol = 0.01,
maxiter = 1000
)
Arguments
A |
an |
b |
a length- |
lambda |
a regularization parameter |
rho |
an augmented Lagrangian parameter |
alpha |
an overrelaxation parameter in [1,2] |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
Value
a named list containing
- x
a length-
n
solution vector- history
dataframe recording iteration numerics. See the section for more details.
Iteration History
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
- objval
object (cost) function value
- r_norm
norm of primal residual
- s_norm
norm of dual residual
- eps_pri
feasibility tolerance for primal feasibility condition
- eps_dual
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm
and s_norm
values
become smaller than eps_pri
and eps_dual
, respectively.
References
Tibshirani R (1996). “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288. ISSN 00359246.
Examples
## generate sample data
m = 50
n = 100
p = 0.1 # percentange of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
## set regularization lambda value
lambda = 0.1*base::norm(t(A)%*%b, "F")
## run example
output = admm.lasso(A, b, lambda)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)