admm.lad {ADMM} | R Documentation |
Least Absolute Deviations
Description
Least Absolute Deviations (LAD) is an alternative to traditional Least Sqaures by using cost function
\textrm{min}_x ~ \|Ax-b\|_1
to use \ell_1
norm instead of square loss for robust estimation of coefficient.
Usage
admm.lad(
A,
b,
xinit = NA,
rho = 1,
alpha = 1,
abstol = 1e-04,
reltol = 0.01,
maxiter = 1000
)
Arguments
A |
an |
b |
a length- |
xinit |
a length- |
rho |
an augmented Lagrangian parameter |
alpha |
an overrelaxation parameter in [1,2] |
abstol |
absolute tolerance stopping criterion |
reltol |
relative tolerance stopping criterion |
maxiter |
maximum number of iterations |
Value
a named list containing
- x
a length-
n
solution vector- history
dataframe recording iteration numerics. See the section for more details.
Iteration History
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,
- objval
object (cost) function value
- r_norm
norm of primal residual
- s_norm
norm of dual residual
- eps_pri
feasibility tolerance for primal feasibility condition
- eps_dual
feasibility tolerance for dual feasibility condition
In accordance with the paper, iteration stops when both r_norm
and s_norm
values
become smaller than eps_pri
and eps_dual
, respectively.
Examples
## generate data
m = 1000
n = 100
A = matrix(rnorm(m*n),nrow=m)
x = 10*matrix(rnorm(n))
b = A%*%x
## add impulsive noise to 10% of positions
idx = sample(1:m, round(m/10))
b[idx] = b[idx] + 100*rnorm(length(idx))
## run the code
output = admm.lad(A,b)
niter = length(output$history$s_norm)
history = output$history
## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)