print.adlp {ADLP} | R Documentation |
Accident and Development period Adjusted Linear Pools (ADLP) Models
Description
Class to estimate an ADLP model fitted by Minorization-Maximisation.
Usage
## S3 method for class 'adlp'
print(x, ...)
adlp(components_lst, newdata, partition_func, param_tol = 1e-16, ...)
Arguments
x |
Object of class |
... |
Other named parameters passed onto further functions |
components_lst |
List of |
newdata |
Validation data to fit the ADLP partitions on |
partition_func |
Partition function used to subset the data. ADLP weights
will be generated for each partition. To specify partition preferences,
set the parameter to |
param_tol |
Tolerance for weights. Any value less than tolerance in magnitude is assumed zero. |
Details
See adlp_component and adlp_components objects for more information on required format for inputs.
See adlp_partition for information on valid partition functions.
For an understanding of how partitions affect the performance of the ADLP ensemble, one might refer to Avanzi, Li, Wong and Xian (2022)
Value
Object of class adlp
. This object has the following components:
- components_lst
adlp_components; List of adlp_components, see also
adlp_components
- model_weights
vector; vector of model weights fitted for each component
- partition_func
function; Partition function used to fit the components
- optim_MM
mm_optim; Details related to the MM algorithm see also
MM_optim()
- newdata
data.frame; Data.frame used to fit the ADLP
References
Avanzi, B., Li, Y., Wong, B., & Xian, A. (2022). Ensemble distributional forecasting for insurance loss reserving. arXiv preprint arXiv:2206.08541.
Examples
data(test_adlp_component)
test_component1 <- test_adlp_component
test_component2 <- test_adlp_component
test_components <- adlp_components(
component1 = test_component1,
component2 = test_component2
)
newdata <- test_component1$model_train$data
test_adlp <- adlp(test_components, newdata = newdata, response_name = "claims",
partition_func = adlp_partition_ap, tri.size = 40, size = 3)