rankByT {ADAPTS} | R Documentation |
Rank genes for each cell type
Description
Use a t-test to rank to features for each cell type
gList <- rankByT(geneExpr, qCut=0.3)
Usage
rankByT(
geneExpr,
qCut = 0.3,
oneCore = FALSE,
secondPval = TRUE,
remZinf = FALSE,
reqRatGT1 = FALSE
)
Arguments
geneExpr |
The gene expression data |
qCut |
(DEFAULT: 0.3) |
oneCore |
Set to TRUE to disable paralellization (DEFAULT: FALSE) |
secondPval |
Set to TRUE to use p-Values as a second sort criteria (DEFAULT: TRUE) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity. Good for scRNAseq. (DEFAULT: FALSE) |
reqRatGT1 |
Set to TRUE to remove any gene with a ratio with less than 1. Good for scRNAseq. (DEFAULT: FALSE) |
Value
a list of cell types with data frames ranking genes
Examples
#This toy example treats the LM22 deconvolution matrix as if it were all of the data
# For a real example, look at the vignette or comments in exprData, fullLM22, small LM22
library(ADAPTS)
fullLM22 <- ADAPTS::LM22[1:200, 1:8]
#Make a fake signature matrix out of 100 genes and the first 8 cell types
smallLM22 <- fullLM22[1:100, 1:8]
#Make fake data representing two replicates of purified Mast.cells
exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")]
colnames(exprData) <- c("Mast.cells", "Mast.cells")
#Fake source data with replicates for all purified cell types.
# Note in this fake data set, many cell types have exactly one replicate
fakeAllData <- cbind(fullLM22, as.data.frame(exprData))
gList <- rankByT(geneExpr = fakeAllData, qCut=0.3, oneCore=TRUE, reqRatGT1=FALSE)
[Package ADAPTS version 1.0.22 Index]