missForest.par {ADAPTS} | R Documentation |
Use parallel missForest to impute missing values.
Description
This wrapper is helpful because missForest crashes if you have more cores than variables. This will default to no parellelization for Windows
newMatrix <- missForest.par(dataMat)
Usage
missForest.par(dataMat, parallelize = "variables")
Arguments
dataMat |
Columns are features, Rows examples. The data with NA values. 'xmis' in missForest |
parallelize |
split on 'forests' or 'variables' (DEFAULT: 'variables') |
Value
a matrix including imputed values
Examples
library(ADAPTS)
LM22 <- ADAPTS::LM22
LM22[2,3] <- as.numeric(NA) #Make some missing data to impute
LM22.imp <- missForest.par(LM22)
[Package ADAPTS version 1.0.22 Index]