loopTillConvergence {ADAPTS} | R Documentation |
Loop testAllSigMatrices until convergence
Description
Iteratively call testAllSigMatrices numLoops times with the option to fast stop if correlation, correlation spear, mae and rmse all converge
Usage
loopTillConvergence(
numLoops,
fastStop,
exprData,
changePer,
handMetaCluster,
testOnHalf,
condTol = 1.01
)
Arguments
numLoops |
The number of iterations. Set to null to loop until results converge. |
fastStop |
Set to TRUE to break the loop when correlation, correlation spear, mae and rmse all converge |
exprData |
The single cell matrix |
changePer |
The maximum percentage of change allowed for convergence |
handMetaCluster |
A List of pre-defined meta clusters. Set to NULL to automatically group indistinguishable cells into same cluster use clustWspillOver (DEFAULT: NULL) |
testOnHalf |
Set to TRUE to leave half the data as a test set to validate all the matrices |
condTol |
The tolerance in the reconstruction algorithm. 1.0 = no tolerance, 1.05 = 5% tolerance (DEFAULT: 1.01) |
Value
A list of results generated from all the iterative calls of testAllSigMatrices
Examples
ct1 <- runif(1000, 0, 100)
ct2 <- runif(1000, 0, 100)
ct3 <- runif(1000, 0, 100)
ct4 <- runif(1000, 0, 100)
dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2, ct3, ct3, ct3,ct3,ct4,ct4)
rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE)
noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE)
dataMat <- dataMat + noise
#options(mc.cores=2)
# This is a meta-function that calls other functions,
# The execution speed is too slow for the CRAN automated check
#loopTillConvergence(numLoops=10, fastStop=TRUE, exprData=dataMat,
# changePer=10,handMetaCluster=NULL, testOnHalf=TRUE)