hierarchicalClassify {ADAPTS} | R Documentation |
Hierarchical Deconvolution
Description
Deconvolve cell types based on clusters detected by an n-pass spillover matrix
Usage
hierarchicalClassify(
sigMatrix,
geneExpr,
toPred,
hierarchData = NULL,
pdfDir = tempdir(),
oneCore = FALSE,
nPasses = 100,
remZinf = TRUE,
method = "DCQ",
useRF = TRUE,
incNonCluster = TRUE
)
Arguments
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix |
toPred |
The gene expression to ultimately deconvolve |
hierarchData |
The results of hierarchicalSplit OR hierarchicalSplit.sc (DEFAULT: NULL, ie hierarchicalSplit) |
pdfDir |
A fold to write the pdf file to (DEFAULT: tempdir()) |
oneCore |
Set to TRUE to disable parallelization (DEFAULT: FALSE) |
nPasses |
The maximum number of iterations for spillToConvergence (DEFAULT: 100) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity when generating gList (DEFAULT: FALSE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
useRF |
Set to TRUE to use ranger random forests to build the seed matrix (DEFAULT: TRUE) |
incNonCluster |
Set to TRUE to include a 'nonCluster' in each of the sub matrices (DEFAULT: TRUE) |
Value
a matrix of cell counts
Examples
#This toy example
library(ADAPTS)
fullLM22 <- ADAPTS::LM22[1:30, 1:4]
smallLM22 <- fullLM22[1:25,]
cellCounts <- hierarchicalClassify(sigMatrix=smallLM22, geneExpr=fullLM22, toPred=fullLM22,
oneCore=TRUE, nPasses=10, method='DCQ')