buildSeed {ADAPTS} | R Documentation |
Build a deconvolution seed matrix, add the proportional option
Description
Use ranger to select features and build a genesInSeed gene matrix
Usage
buildSeed(
trainSet,
genesInSeed = 200,
groupSize = 30,
randomize = TRUE,
num.trees = 1000,
plotIt = TRUE,
trainSet.3sam = NULL,
trainSet.30sam = NULL,
proportional = FALSE
)
Arguments
trainSet |
Each row is a gene, and each column is an example of a particular cell type, ie from single cell data |
genesInSeed |
The maximum number of genes in the returned seed matrix (DEFAULT: 200) |
groupSize |
The number of groups to break the trainSet into by ADAPTS::scSample (DEFAULT: 30) |
randomize |
Set to TRUE randomize the sets selected by ADAPTS::scSample (DEFAULT: TRUE) |
num.trees |
The number of trees to be used by ranger (DEFAULT: 1000) |
plotIt |
Set to TRUE to plot (DEFAULT: TRUE) |
trainSet.3sam |
Optional pre-calculated ADAPTS::scSample(trainSet, groupSize = 3) (DEFAULT: NULL) |
trainSet.30sam |
Optional pre-calculated ADAPTS::scSample(trainSet, groupSize=groupSize, randomize=randomize) (DEFAULT: NULL) |
proportional |
Set to true to make the training set cell type proportional. Ignores group size (DEFAULT: FALSE) |
Value
A list with condition numbers and gene lists
Examples
library(ADAPTS)
ct1 <- runif(1000, 0, 100)
ct2 <- runif(1000, 0, 100)
dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2)
rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE)
noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE)
dataMat <- dataMat + noise
newSigMat <- buildSeed(trainSet=dataMat)