BurrDist {ACDm} | R Documentation |
The Burr Distribution
Description
Density, distribution function, quantile function, random generation and calculation of the expected value for the Burr distribution with parameters theta, kappa and sig2.
Usage
dburr(x, theta = 1, kappa = 1.2, sig2 = 0.3, forceExpectation = F)
pburr(x, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
qburr(p, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
rburr(n = 1, theta = 1, kappa = 1.2, sig2 = .3, forceExpectation = F)
burrExpectation(theta = 1, kappa = 1.2, sig2 = .3)
Arguments
x |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.. |
theta , kappa , sig2 |
parameters, see 'Details'. |
forceExpectation |
logical; if |
Details
The PDF for the Burr distribution is (as in e.g. Grammig and Maurer, 2000):
f(x)=\frac{\theta \kappa x^{\kappa - 1}}{(1 + \sigma^2 x^{\kappa)^{\frac{1}{\sigma^2}+1}}}
Value
dburr
gives the density (PDF), qburr
the quantile function (inverted CDF), rburr
generates random deviates, and burrExpectation
returns the expected value of the distribution, given the parameters.
Author(s)
Markus Belfrage
References
Grammig, J., and Maurer, K.-O. (2000) Non-monotonic hazard functions and the autoregressive conditional duration model. Econometrics Journal 3: 16-38.