ggplot2.zoo {zoo} | R Documentation |
Convenience Functions for Plotting zoo Objects with ggplot2
Description
fortify.zoo
takes a zoo object and converts it into a data frame
(intended for ggplot2). autoplot.zoo
takes a zoo object and returns a
ggplot2 object. It essentially uses the mapping aes(x = Time, y = Value, group = Series)
and adds colour = Series
in the case of a multivariate series with facets = NULL
.
Usage
## S3 method for class 'zoo'
autoplot(object, geom = "line", facets, ...)
## S3 method for class 'zoo'
fortify(model, data,
names = c("Index", "Series", "Value"),
melt = FALSE, sep = NULL, ...)
facet_free(facets = Series ~ ., margins = FALSE, scales = "free_y", ...)
yearmon_trans(format = "%b %Y", n = 5)
scale_x_yearmon(..., format = "%b %Y", n = 5)
scale_y_yearmon(..., format = "%b %Y", n = 5)
yearqtr_trans(format = "%Y-%q", n = 5)
scale_x_yearqtr(..., format = "%Y-%q", n = 5)
scale_y_yearqtr(..., format = "%Y-%q", n = 5)
Arguments
object |
an object of class |
geom |
character (e.g., |
facets |
specification of |
... |
further arguments passed to |
model |
an object of class |
data |
not used (required by generic |
names |
(list of) character vector(s). New names given to index/time column, series indicator (if melted), and value column (if melted). If only a subset of characters should be changed, either NAs can be used or a named vector. |
sep |
If specified then the Series column is split into multiple columns using sep as the split character. |
melt |
Should the resulting data frame be in long format ( |
margins |
As in |
scales |
As in |
format |
A format acceptable to format.yearmon or format.yearqtr. |
n |
Approximate number of axis ticks. |
Details
Convenience interface for visualizing zoo objects with ggplot2.
autoplot.zoo
uses fortify.zoo
(with melt = TRUE
)
to convert the zoo object into a data frame and then uses a suitable
aes()
mapping to visiualize the series.
Value
fortify.zoo
returns a data.frame
either in long format
(melt = TRUE
) or in wide format (melt = FALSE
). The
long format has three columns: the time Index
, a
factor indicating the Series
, and the corresponding Value
.
The wide format simply has the time Index
plus all columns
of coredata(model)
.
autoplot.zoo
returns a ggplot
object.
Author(s)
Trevor L. Davis trevor.l.davis@gmail.com, Achim Zeileis
See Also
Examples
if(require("ggplot2") && require("scales")) {
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
## example data
x.Date <- as.Date(paste(2003, 02, c(1, 3, 7, 9, 14), sep = "-"))
x <- zoo(rnorm(5), x.Date)
xlow <- x - runif(5)
xhigh <- x + runif(5)
z <- cbind(x, xlow, xhigh)
## univariate plotting
autoplot(x)
## by hand
ggplot(aes(x = Index, y = Value), data = fortify(x, melt = TRUE)) +
geom_line() + xlab("Index") + ylab("x")
## adding series one at a time
last_plot() + geom_line(aes(x = Index, y = xlow), colour = "red", data = fortify(xlow))
## add ribbon for high/low band
ggplot(aes(x = Index, y = x, ymin = xlow, ymax = xhigh), data = fortify(x)) +
geom_ribbon(fill = "darkgray") + geom_line()
## multivariate plotting in multiple or single panels
autoplot(z) ## multiple without color/linetype
autoplot(z, facets = Series ~ .) ## multiple with series-dependent color/linetype
autoplot(z, facets = NULL) ## single with series-dependent color/linetype
## by hand with color/linetype and with/without facets
ggz <- ggplot(aes(x = Index, y = Value, group = Series, colour = Series, linetype = Series),
data = fortify(z, melt = TRUE)) + geom_line() + xlab("Index") + ylab("")
ggz
ggz + facet_grid(Series ~ .)
## variations
autoplot(z, geom = "point")
autoplot(z, facets = NULL) + geom_point()
autoplot(z, facets = NULL) + scale_colour_grey() + theme_bw()
## for "ts" series via coercion
autoplot(as.zoo(EuStockMarkets))
autoplot(as.zoo(EuStockMarkets), facets = NULL)
autoplot(z) +
aes(colour = NULL, linetype = NULL) +
facet_grid(Series ~ ., scales = "free_y")
autoplot(z) + aes(colour = NULL, linetype = NULL) + facet_free() # same
z.yq <- zooreg(rnorm(50), as.yearqtr("2000-1"), freq = 4)
autoplot(z.yq)
## mimic matplot
data <- cbind(A = c(6, 1, NA, NA), B = c(16, 4, 1, NA), C = c(25, 7, 2, 1))
autoplot(zoo(data), facet = NULL) + geom_point()
## with different line types
autoplot(zoo(data), facet = NULL) + geom_point() + aes(linetype = Series)
## illustrate just fortify() method
z <- zoo(data)
fortify(z)
fortify(z, melt = TRUE)
fortify(z, melt = TRUE, names = c("Time", NA, "Data"))
fortify(z, melt = TRUE, names = c(Index = "Time"))
## with/without splitting
z <- zoo(cbind(a.A = 1:2, a.B = 2:3, b.A = 3:4, c.B = 4:5))
fortify(z)
fortify(z, melt = TRUE, sep = ".", names = list(Series = c("Lower", "Upper")))
## scale_x_yearmon with custom discrete breaks
df <- data.frame(dates = as.yearmon("2018-08") + 0:6/12, values = c(2:6, 0, 1))
ggdf <- ggplot(df, aes(x = dates, y = values)) +
geom_bar(position = "dodge", stat = "identity") + theme_light() +
xlab("Month") + ylab("Values")
ggdf ## with default scale_x_yearmon
ggdf + scale_x_yearmon(breaks = df$dates) ## with custom discrete breaks
}