| model_parameters.htest {parameters} | R Documentation |
Parameters from hypothesis tests
Description
Parameters of h-tests (correlations, t-tests, chi-squared, ...).
Usage
## S3 method for class 'htest'
model_parameters(
model,
ci = 0.95,
alternative = NULL,
bootstrap = FALSE,
es_type = NULL,
verbose = TRUE,
...
)
## S3 method for class 'coeftest'
model_parameters(
model,
ci = 0.95,
ci_method = "wald",
keep = NULL,
drop = NULL,
verbose = TRUE,
...
)
Arguments
model |
Object of class |
ci |
Level of confidence intervals for effect size statistic. Currently
only applies to objects from |
alternative |
A character string specifying the alternative hypothesis;
Controls the type of CI returned: |
bootstrap |
Should estimates be bootstrapped? |
es_type |
The effect size of interest. Not that possibly not all effect sizes are applicable to the model object. See 'Details'. For Anova models, can also be a character vector with multiple effect size names. |
verbose |
Toggle warnings and messages. |
... |
Arguments passed to or from other methods. For instance, when
|
ci_method |
Method for computing degrees of freedom for
confidence intervals (CI) and the related p-values. Allowed are following
options (which vary depending on the model class): |
keep |
Character containing a regular expression pattern that
describes the parameters that should be included (for |
drop |
See |
Details
For an object of class
htest, data is extracted viainsight::get_data(), and passed to the relevant function according to:A t-test depending on
type:"cohens_d"(default),"hedges_g", or one of"p_superiority","u1","u2","u3","overlap".For a Paired t-test: depending on
type:"rm_rm","rm_av","rm_b","rm_d","rm_z".
A Chi-squared tests of independence or Fisher's Exact Test, depending on
type:"cramers_v"(default),"tschuprows_t","phi","cohens_w","pearsons_c","cohens_h","oddsratio","riskratio","arr", or"nnt".A Chi-squared tests of goodness-of-fit, depending on
type:"fei"(default)"cohens_w","pearsons_c"A One-way ANOVA test, depending on
type:"eta"(default),"omega"or"epsilon"-squared,"f", or"f2".A McNemar test returns Cohen's g.
A Wilcoxon test depending on
type: returns "rank_biserial" correlation (default) or one of"p_superiority","vda","u2","u3","overlap".A Kruskal-Wallis test depending on
type:"epsilon"(default) or"eta".A Friedman test returns Kendall's W. (Where applicable,
ciandalternativeare taken from thehtestif not otherwise provided.)
For an object of class
BFBayesFactor, usingbayestestR::describe_posterior(),A t-test depending on
type:"cohens_d"(default) or one of"p_superiority","u1","u2","u3","overlap".A correlation test returns r.
A contingency table test, depending on
type:"cramers_v"(default),"phi","tschuprows_t","cohens_w","pearsons_c","cohens_h","oddsratio", or"riskratio","arr", or"nnt".A proportion test returns p.
Objects of class
anova,aov,aovlistorafex_aov, depending ontype:"eta"(default),"omega"or"epsilon"-squared,"f", or"f2".Other objects are passed to
parameters::standardize_parameters().
For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.
Value
A data frame of indices related to the model's parameters.
Examples
model <- cor.test(mtcars$mpg, mtcars$cyl, method = "pearson")
model_parameters(model)
model <- t.test(iris$Sepal.Width, iris$Sepal.Length)
model_parameters(model, es_type = "hedges_g")
model <- t.test(mtcars$mpg ~ mtcars$vs)
model_parameters(model, es_type = "hedges_g")
model <- t.test(iris$Sepal.Width, mu = 1)
model_parameters(model, es_type = "cohens_d")
data(airquality)
airquality$Month <- factor(airquality$Month, labels = month.abb[5:9])
model <- pairwise.t.test(airquality$Ozone, airquality$Month)
model_parameters(model)
smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
model <- suppressWarnings(pairwise.prop.test(smokers, patients))
model_parameters(model)
model <- suppressWarnings(chisq.test(table(mtcars$am, mtcars$cyl)))
model_parameters(model, es_type = "cramers_v")