| crruni {finalfit} | R Documentation | 
Competing risks univariable regression: finalfit model wrapper
Description
Using finalfit conventions, produces univariable Competing Risks
Regression models for a set of explanatory variables.
Usage
crruni(.data, dependent, explanatory, ...)
Arguments
| .data | Data frame or tibble. | 
| dependent | Character vector of length 1: name of survival object in
form  | 
| explanatory | Character vector of any length: name(s) of explanatory variables. | 
| ... | Other arguments to  | 
Details
Uses crr with finalfit modelling conventions.
Output can be passed to fit2df.
Value
A list of univariable crr fitted models class
crrlist.
See Also
Other finalfit model wrappers: 
coxphmulti(),
coxphuni(),
crrmulti(),
glmmixed(),
glmmulti_boot(),
glmmulti(),
glmuni(),
lmmixed(),
lmmulti(),
lmuni(),
svyglmmulti(),
svyglmuni()
Examples
library(dplyr)
melanoma = boot::melanoma
melanoma = melanoma %>%
  mutate(
    # Cox PH to determine cause-specific hazards
    status_coxph = ifelse(status == 2, 0, # "still alive"
      ifelse(status == 1, 1, # "died of melanoma"
        0)), # "died of other causes is censored"
        
    # Fine and Gray to determine subdistribution hazards
    status_crr = ifelse(status == 2, 0, # "still alive"
      ifelse(status == 1, 1, # "died of melanoma"
        2)), # "died of other causes"
    sex = factor(sex),
    ulcer = factor(ulcer)
  )
dependent_coxph = c("Surv(time, status_coxph)")
dependent_crr = c("Surv(time, status_crr)")
explanatory = c("sex", "age", "ulcer")
# Create single well-formatted table
melanoma %>%
  summary_factorlist(dependent_crr, explanatory, column = TRUE, fit_id = TRUE) %>%
  ff_merge(
    melanoma %>%
      coxphmulti(dependent_coxph, explanatory) %>%
      fit2df(estimate_suffix = " (Cox PH multivariable)")
    ) %>%
  ff_merge(
    melanoma %>%
      crrmulti(dependent_crr, explanatory) %>%
      fit2df(estimate_suffix = " (competing risks multivariable)")
    ) %>%
  select(-fit_id, -index) %>%
  dependent_label(melanoma, dependent_crr)